European journal of pharmacology
-
The emergence of the global pandemic caused by novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has put a challenge to identify or derive the therapeutics for its prevention and treatment. Despite the unprecedented advances in the modern medicinal system, currently, there are no proven effective therapies. However, rapid research on SARS-CoV-2 epidemiology help unveiling some new targets for potential drug therapies. ⋯ The establishment of various in vitro and in vivo models for preclinical studies can additionally help the current research. The volume and the pace of the clinical trials launched to evaluate the safety and efficacy of various agents against coronavirus disease 2019 (COVID-19) reflect the need for high-quality evidence for various therapies to be practiced by clinicians. This study aims to sum up all the current advances in the global medicinal system against the COVID-19.
-
Since December 2019, the coronavirus disease 2019 (COVID-19) caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has spread throughout China as well as other countries. More than 8,700,000 confirmed COVID-19 cases have been recorded worldwide so far, with much more cases popping up overseas than those inside. As the initial epicenter in the world, China has been combating the epidemic for a relatively longer period and accumulated valuable experience in prevention and control of COVID-19. ⋯ R. China, and the novel therapeutic agents now undergoing clinical trials approved by China National Medical Products Administration (NMPA) to evaluate experimental treatment for COVID-19. Reviewing the progress in drug development for the treatment against COVID-19 in China may provide insight into the epidemic control in other countries.
-
SARS-CoV-2, a newly emerged pathogen in December 2019, marked as one of the highly pathogenic Coronavirus, and altogether this is the third coronavirus attack that crossed the species barrier. As of 1st July 2020, it is spreading around 216 countries, areas or territories, and a total of 10,185,374 and 503,862 confirmed cases and death reports, respectively. The SARS-CoV-2 virus entered into the target cells by binding with the hACE2 receptors. ⋯ Vaccine development from various pharmaceutical companies and research institutes is under progress, and more than ten vaccine candidates are in the various phases of clinical trials. This review work highlighted the origin, emergence, structural features, pathogenesis, and clinical features of COVID-19. We have also discussed the in-line treatment strategies, preventive measures, and vaccines to combat the emergence of COVID-19.
-
The first cases of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2 or COVID-19) infections were recorded in China in November 2019. Since its appearance in China at the end of last year, the virus has spread to all continents causing a "global pandemic". To date, some aspects remain to be investigate about the pathophysiology of this viral infection. ⋯ RAS is a physiological system playing a key role in different human body functions regulation. SARS-CoV-2 uses the angiotensin-converting enzyme 2 (ACE-2), a component of RAS, as a potential factor of cell penetration and infectivity; in addition, in the different infection stages, a functional variation of the RAS has been noted. In this article, we discuss the correlation between the role of RAS and system-modifying agents, angiotensin-converting enzyme inhibitors (ACEIs), angiotensin II receptor blockers (ARBs) and direct renin inhibitors (DRIs), with SARS-CoV-2 infection.
-
The calcineurin (CaN)/nuclear factor of activated T-cell (NFAT) signalling pathway plays an important role in pathological cardiac hypertrophy. Here, we investigated the potential effects of stachydrine hydrochloride, a bioactive constituent extracted from the Chinese herb Leonurus japonicus Houtt. (Yimucao), on pathological cardiac hypertrophy during chronic α1-adrenergic receptor (α1-AR) activation and the underlying mechanisms. First, by transcriptome analysis, we determined that pathological hypertrophy models could be prepared after phenylephrine stimulation. ⋯ Interestingly, stachydrine hydrochloride inhibited CaN activation and reduced NFATc3 nuclear translocation in phenylephrine-stimulated neonatal rat ventricular myocytes. In mice treated with phenylephrine, stachydrine hydrochloride treatment decreased cardiac hypertrophy and regulated heart function. Collectively, our data show that stachydrine hydrochloride decreases cardiac hypertrophy in phenylephrine-stimulated hearts by inhibiting the CaN/NFAT pathway, which might contribute to alleviation of pathological cardiac hypertrophy and cardiac dysfunction by stachydrine hydrochloride after phenylephrine stimulation This also indicated that governing of CaN/NFAT pathway might serve as a preventive or therapeutic strategy for pathological cardiac hypertrophy.