European journal of pharmacology
-
Comparative Study
Anti-allodynic interactions between NMDA receptor channel blockers and morphine or clonidine in neuropathic rats.
Previous studies suggested that combining N-methyl-d-aspartate (NMDA) receptor antagonists with either mu-opioid agonist morphine or alpha2-adrenoreceptor agonist clonidine results in the significant synergistic enhancement of analgesic activity in the animal models of acute and neuropathic pain. When given alone, NMDA receptor antagonists, morphine and clonidine are capable of attenuating tactile allodynia associated with chronic nerve injury. The present study aimed to assess anti-allodynic effects of these compounds and to test additivity of these interactions using isobolographic analysis. ⋯ None of the tested combinations produced supra-additive, synergistic effects. In fact, memantine+clonidine, neramexane+clonidine and morphine+neramexane were producing simple additive effects, while morphine+memantine was characterized as the infra-additive combination. Thus, despite expectations based on previous studies, NMDA receptor channel blockers, memantine and neramexane, produce no synergistic interactions with either morphine or clonidine when administered acutely to rats with nerve injury-induced tactile allodynia.
-
Phenylethyl isothiocyanate (PEITC) is a well recognized potential chemopreventive compound against human cancers. In this study, the molecular mechanism of PEITC-induced apoptosis was examined with two antioxidants (N-acetyl-cysteine and vitamin E) and a caspase-3 inhibitor (z-DEVD-fmk). Results demonstrated that PEITC significantly induced human hepatoma PLC/PRF/5 (CD95-negative) cells undergoing apoptosis. ⋯ N-acetyl-cysteine, vitamin E and z-DEVD-fmk also prevented the PEITC in inducing the loss of Deltapsim. They also affected the activity of XIAP and Bax proteins. Taken together, these studies suggest that PEITC is an apoptotic inducer that acts on the mitochondria and the feedback amplification loop of caspase-8/Bid pathways in PLC/PRF/5 cells.
-
Randomized Controlled Trial Comparative Study Clinical Trial
Modulation of neutrophil and inflammation markers in chronic obstructive pulmonary disease by short-term azithromycin treatment.
The anti-inflammatory potential of azithromycin in chronic obstructive pulmonary disease (COPD) patients was explored following a standard oral dosing regimen. Patients with moderate and severe COPD were treated with azithromycin (500 mg, n=16) or placebo (n=8) once daily for 3 days in a randomized, double blind design, to compare effects on inflammation markers with those seen in a previous study in healthy volunteers. A battery of tests was made on serum, blood neutrophils and sputum on days 1 (baseline), 3, 4, 11, 18 and 32. ⋯ Blood neutrophil glutathione peroxidase activity showed a prolonged increase after azithromycin treatment. The biphasic facilitatory-then-inhibitory response to azithromycin seen in healthy volunteers is not so clearly detectable in COPD patients, only potential anti-inflammatory effects. Treatment for longer periods may give therapeutic anti-inflammatory benefit in these patients.
-
Cyclooxygenase-2 is harmful in models of cerebral ischemia yet plays a protective role in preconditioning-induced ischemic tolerance in the heart. This study examined the mechanisms underlying cyclooxygenase-2-mediated neurotoxicity and preconditioning-induced neuroprotection in an in vitro model of cerebral ischemia. Inhibition of cyclooxygenase-2 protects cortical neuronal cultures from death induced by oxygen-glucose deprivation and reduces oxygen-glucose deprivation-induced increases in intracellular Ca(2+) ([Ca(2+)](i)). ⋯ Furthermore, cultures were rendered tolerant to oxygen-glucose deprivation by the transient exposure to exogenous PGE(2) 24 h prior to the insult, indicating that this product of the cyclooxygenase-2 pathway is sufficient to induce ischemic tolerance. This study shows that cyclooxygenase-2 and PGE(2) are involved in both oxygen-glucose deprivation-induced neurotoxicity and preconditioning-induced neuroprotection. While neurotoxic in the context of lethal oxygen-glucose deprivation, the moderate activation of this signalling pathway confers ischemic tolerance.
-
Comparative Study
alpha(2)-Adrenoceptor involvement in the in vitro inhibitory effect of citalopram on a subpopulation of rat locus coeruleus neurons.
The aim of the present study was to investigate the modulation of locus coeruleus neurons by the selective serotonin (5-HT) reuptake inhibitor citalopram using single-unit extracellular recordings in rat brain slices. Citalopram inhibited the activity of a subpopulation of locus coeruleus neurons; thus 10 microM citalopram inhibited neurons by 53+/-17% (5 out of 15 cells), whereas the inhibition due to 100 microM was 64+/-4% (32 out of 42 cells). ⋯ Long-term treatment with citalopram (20 mg/kg/day) did not modify the effect of noradrenaline and bromoxidine. Taken together, our results indicate that citalopram exerts an inhibitory effect on locus coeruleus noradrenergic neurons. alpha(2)-adrenoceptor activation may underlie this effect as a result of elevated levels of noradrenaline in the synaptic cleft.