European journal of pharmacology
-
We investigated the effect of the new potent and selective histamine H3 receptor agonist, immepip, and the histamine H3 receptor antagonist, clobenpropit, on in vivo neuronal histamine release from the anterior hypothalamic area of urethane-anesthetized rats, using microdialysis. Intrahypothalamic perfusion with immepip at concentrations of 1 and 10 nM reduced histamine release to 75% and 35% of its basal level, respectively. Peripheral injection of immepip (5 mg/kg) caused a sustained decrease in histamine release of 50%. ⋯ In conclusion, intrahypothalamic perfusion of the histamine H3 receptor agonist, immepip and the histamine H3 receptor antagonist, clobenpropit, potently and oppositely modulated in vivo histamine release from the anterior hypothalamic area. The decreased histamine release after peripheral injection of immepip indicates that this novel agonist readily crosses the blood-brain barrier, making it a potential candidate for in vivo histamine H3 receptor studies. The differential increase in histamine release after peripheral injection of clobenpropit and thioperamide is discussed.
-
The present study characterized a murine model of immune complex-induced pneumonitis and investigated the role of platelet-activating factor (PAF) and eicosanoids as mediators of lung neutrophil infiltration and hemorrhagic lesions. Rabbit antibodies to bovine serum albumin were injected into the airways and bovine serum albumin was injected intravenously into C3H/HePas and BALB/c mice. After 24 h, a significant increase in neutrophil infiltration and hemoglobin concentration in the bronchoalveolar lavage fluid and lung parenchyma was observed in both strains despite the C3H/HePas strain being 10 times more sensitive to PAF. ⋯ Increased levels of leukotriene B4, leukotriene C4/D4, thromboxane B2 were found in bronchoalveolar lavage fluid 4 h after induction of the reaction. There is also a tendency to increased prostaglandins E2 levels. Neutrophil infiltration and vascular lesions in immune complex-induced pneumonitis in mice are mediated by leukotriene B4.
-
The local anaesthetic bupivacaine has recently been proposed to inhibit Na+ channels indirectly by making the resting potential less negative. To test this hypothesis we analysed the effects of bupivacaine on voltage and current clamped nodes of Ranvier. Contrary to the hypothesis, the leak current and the resting potential were unaffected. ⋯ The effect on the Na+ current was tentatively explained by a single-site, state-dependent binding model (Kd = 44 microM), while that on the K+ current was explained by two population-specific mechanisms, one open-state dependent (Kd = 550 microM) and one state independent (Kd = 59 microM). The binding stoichiometry was higher than 1:1 for the main sites of action. In conclusion, bupivacaine exerts its main anaesthetic action on myelinated nerve axons by a direct modification of Na+ channels.
-
The present study investigated the possible role of nitric oxide (NO) in the development of the withdrawal contractures of guinea pig isolated ileum after acute activation of mu- and kappa-opioid receptors. After a 4-min in vitro exposure to morphine (mu-opioid receptor preferring, but not selective, agonist), [D-Ala2-N-methyl-Phe4-Gly5-ol-]enkephalin (DAMGO; highly selective mu-opioid receptor agonist), or trans(+/-)-3,4-dichloro-N-methyl-N-2(1-pyrrolidynyl)cyclohexyl-ben zeneacetamide (U50-488H; highly selective kappa-opioid receptor agonist), the guinea-pig isolated ileum exhibited a strong contracture after the addition of naloxone. ⋯ Finally, glyceryl trinitrate on its own (3-300 microM) significantly increased the naloxone-induced contraction after exposure to mu- and kappa-opioid receptor agonist and it was also able to reverse the inhibition of opioid withdrawal caused by L-N(G)-nitro arginine methyl ester. These results provide evidence that NO has a role in the development of opioid withdrawal and that mu- or kappa-opioid receptors are involved.
-
The pharmacological diversity of the different isoforms of the nicotinic acetylcholine receptor arises from the diversity of the subunits that assemble to form the native receptors. The aim of this study was to investigate the actions of the muscle relaxants d-tubocurarine, pancuronium and vecuronium on different isoforms of nicotinic acetylcholine receptors (mouse foetal muscle, mouse adult muscle and a rat neuronal), using the Xenopus oocyte expression system. Oocytes were injected with cRNAs for alpha, beta, gamma, delta subunits (the native foetal muscle subunit combination), or with cRNAs for alpha, beta, epsilon, delta subunits (the native adult muscle subunit combination), or with cRNAs for alpha4beta2 subunits (a putative native neuronal subunit combination). ⋯ In the alpha4beta2 neuronal nicotinic acetylcholine receptor combination, 10 nM pancuronium was a more effective antagonist of the response to 100 microM acetylcholine (69 +/- 6%, n = 6) than 10 nM d-tubocurarine (30 +/- 5%; n = 6; P < 0.05 compared to pancuronium). This is in contrast to the adult muscle nicotinic acetylcholine receptor, where pancuronium and d-tubocurarine were equieffective. The expression of the beta2 subunit with muscle alpha, epsilon and delta subunits formed a functional receptor which was blocked by pancuronium and d-tubocurarine in a similar manner to the alphabeta1epsilondelta subunit consistent with the hypothesis that the beta subunit is not a major determinant in the action of this drug at the adult muscle nicotinic acetylcholine receptor.