European journal of pharmacology
-
Milnacipran, a reuptake inhibitor of noradrenaline (NA) and serotonin (5-HT), elicits an antiallodynic effect in rats with neuropathic pain; however, the role of NA and 5-HT receptors in the induction of the antiallodynic effect of milnacipran remains unclear. Thus, we examined the effects of prazosin as an α1 adrenoceptor antagonist, yohimbine as an α2 adrenoceptor antagonist, metergoline as a 5-HT1, 5-HT2 and 5-HT7 receptor antagonist, cyanopindolol as a 5-HT1A/1B receptor antagonist, ketanserin as a 5-HT2 receptor antagonist, and ondansetoron as a 5-HT3 receptor antagonist on the antiallodynic effect of milnacipran in neuropathic rats with chronic constriction injury (CCI). The CCI rats expressed mechanical and thermal allodynia, which was attenuated by intrathecal injection of milnacipran. ⋯ Furthermore, c-Fos expression in lamina I/II of the spinal dorsal horn was enhanced by thermal stimulation and the enhanced expression of c-Fos was suppressed by milnacipran. This effect of milnacipran was reversed by yohimbine, metergoline, katanserin and ondansetron, but not prazosin. These results indicate that the effect of milnacipran on mechanical and thermal allodynia and c-Fos expression is elicited through the α2 adrenoceptor, but not α1 adrenoceptor, and 5-HT2 and 5-HT3 receptors; furthermore, the 5-HT1A/1B receptor is involved in mechanical allodynia, but not thermal allodynia.
-
Central neuropathic pain can arise from injury of the spinal cord and can become chronic. Treatment is difficult and, because complete pain relief is currently very hard to achieve, there is a need for new, more effective treatment options. In this study we used an animal model of spinal cord injury to evaluate the potency of a bioactive fragment of substance P (SP), i.e. ⋯ In contrast, the response threshold to acute nociceptive stimulation was not affected by any of the compounds tested. Most of the amino acids in the heptapeptide structure were essential for retaining the biological effect after peripheral injection. These observations suggest that the heptapeptide and its N-terminal truncated hexa- and pentapeptide analogs could be of interest for further development of analgesics in the management of mechanical allodynia.
-
This study was designed to determine whether acute or chronic venlafaxine administration was effective in alleviating symptoms of neuropathic pain in a rat model of neuropathic pain, and whether the effect of venlafaxine involved manipulation of α2-adrenoceptors,by determining the effect of yohimbine, a α2-adrenoceptor antagonist on its actions. Neuropathic pain was induced by chronic constriction injury (CCI) of the sciatic nerve in the rats that resulted in stimulus-evoked thermal hyperalgesia, tactile mechanical and cold allodynia. Acute venlafaxine injections (20 and 40 mg/kg i.p.) on the 7th, 14th and 21st postoperative days could not reduce tactile and cold hypersensitivity significantly compared to CCI group. ⋯ Also the effect of venlafaxine on heat hyperalgesia was reversed by pretreatment with yohimbine at all-time intervals. These results indicate that venlafaxine, when administered immediately after nerve injury, and for a sufficient period of time, can prevent the development and expression of neuropathic pain. Also we conclude that α2-adrenoceptors participate in the antinociceptive effects of venlafaxine.
-
The mechanism through which marijuana produces its psychoactive effects is Δ(9)-tetrahydrocannabinol (THC)-induced activation of cannabinoid CB1 receptors. These receptors are normally activated by endogenous lipids, including anandamide and 2-arachidonoyl glycerol (2-AG). A logical "first step" in determination of the role of these endocannabinoids in THC׳s psychoactive effects is to investigate the degree to which pharmacologically induced increases in anandamide and/or 2-AG concentrations through exogenous administration and/or systemic administration of inhibitors of their metabolism, fatty acid amide hydrolase (FAAH) or monoacylglycerol lipase (MAGL), respectively, share THC׳s discriminative stimulus effects. ⋯ The MAGL inhibitor JZL184 increased brain levels of 2-AG in vitro and in vivo, increased THC-like responding without co-administration of 2-AG. In rats, neither URB597 nor JZL184 engendered significant THC-appropriate responding, but co-administration of these two enzyme inhibitors approached full substitution. The present results highlight the complex interplay between anandamide and 2-AG and suggest that endogenous increases of both endocannabinoids are most effective in elicitation of THC-like discriminative stimulus effects.
-
G protein-coupled receptor 40 (GPR40) is a Gq-coupled receptor for free fatty acids predominantly expressed in pancreatic β-cells. In recent years, GPR40 agonists have been investigated for use as novel therapeutic agents in the treatment of type 2 diabetes. We discovered a novel small molecule GPR40 agonist, (3S)-3-ethoxy-3-(4-{[(1R)-4-(trifluoromethyl)-2,3-dihydro-1H-inden-1-yl]oxy}phenyl)propanoic acid (DS-1558). ⋯ Furthermore, the glucose lowering effects of exendin-4, a GLP-1 receptor agonist, were markedly potentiated by the DS-1558 (3mg/kg) add-on in diabetic db/db mice during an intraperitoneal glucose tolerance test. In conclusion, our results indicate that add-on GPR40 agonists to GLP-1 related agents might be a potential treatment compared to single administration of these compounds. Therefore the combinations of these agents are a novel therapeutic option for type 2 diabetes.