European journal of pharmacology
-
In contrast to several other antipsychotic drugs, the effects of the atypical antipsychotic risperidone on voltage-gated sodium channels have not been characterized yet, despite its wide clinical use. Here we performed whole-cell voltage-clamp recordings to analyze the effects of risperidone on voltage-dependent sodium currents of N1E-115 mouse neuroblastoma cells carried by either endogenous sodium channels or transfected NaV1.6 channels. Risperidone inhibited both endogenous and NaV1.6-mediated sodium currents at concentrations that are expected around active synaptic release sites owing to its strong accumulation in synaptic vesicles. ⋯ As a consequence of the low state dependence, risperidone produced only a small, but significant leftward shift of the steady-state inactivation curve and it required concentrations ≥ 30 µM to significantly slow the time course of recovery from inactivation. Risperidone (10 µM) gave rise to a pronounced use-dependent block when sodium currents were elicited by trains of brief voltage pulses at higher frequencies. Our data suggest that, compared to other antipsychotic drugs as well as to local anesthetics and sodium channel-targeting anticonvulsants, risperidone displays an unusual blocking profile where a rather low degree of state dependence is associated with a prominent use-dependent block.
-
Diabetes mellitus is an increasingly common chronic medical condition. Approximately 30% of diabetic patients develop neuropathic pain, manifested as spontaneous pain, hyperalgesia and allodynia. Hyperglycemia induces metabolic changes in peripheral tissues and enhances oxidative stress in nerve fibers. ⋯ In turn, microglia synthesize and release pro-inflammatory cytokines and neuroactive molecules capable of inducing hyperactivity of spinal nociceptive neurons. Hence, it is imperative to elucidate glial mechanisms underlying DNP for the development of effective therapeutic agents. The present review highlights the recent developments regarding the contribution of spinal microglia as compelling target for the treatment of DNP.
-
In the central nervous system, deficits in cholinergic neurotransmission correlate with decreased attention and cognitive impairment, while stimulation of neuronal nicotinic acetylcholine receptors improves attention, cognitive performance and neuronal resistance to injury as well as produces robust analgesic and anti-inflammatory effects. The rational basis for the therapeutic use of orthosteric agonists and positive allosteric modulators (PAMs) of nicotinic receptors arises from the finding that functional nicotinic receptors are ubiquitously expressed in neuronal and non-neuronal tissues including brain regions highly vulnerable to traumatic and ischemic types of injury (e.g., cortex and hippocampus). Moreover, functional nicotinic receptors do not vanish in age-, disease- and trauma-related neuropathologies, but their expression and/or activation levels decline in a subunit- and brain region-specific manner. ⋯ Importantly, because neuronal damage elevates extracellular levels of choline (a selective agonist of α7 nicotinic acetylcholine receptors) near the site of injury, α7-PAM-based treatments may augment pathology-activated α7-dependent auto-therapies where and when they are most needed (i.e., in the penumbra, post-injury). Thus, nicotinic-PAM-based treatments are expected to augment the endogenous cholinergic tone in a spatially and temporally restricted manner creating the potential for differential efficacy and improved safety as compared to exogenous orthosteric nicotinic agonists that activate nicotinic receptors indiscriminately. In this review, I will summarize the existing trends in therapeutic applications of nicotinic PAMs.
-
The present study investigates the analgesic effect of minocycline, a semi-synthetic tetracycline antibiotic, in a rat model of inflammation-induced visceral pain. Inflammation was induced in male rats by intracolonic administration of tri-nitrobenzenesulphonic acid (TNBS). Visceral hyperalgesia was assessed by comparing the viscero-motor response (VMR) to graded colorectal distension (CRD) prior and post 7 days after TNBS treatment. ⋯ Interestingly, minocycline did not exhibit analgesic effect in naïve, non-inflamed rats. The results demonstrate that intrathecal injection of minocycline can effectively attenuate inflammation-induced visceral hyperalgesia. Minocycline might as well act on neuronal targets in the spinal cord of inflamed rats, in addition to the widely reported glial inhibitory action to produce analgesia.
-
n-butyl-p-aminobenzoate (BAB), a local anesthetic, is administered epidurally in cancer patients to treat pain that is poorly controlled by other drugs that have a number of adverse effects. The purpose of the study was to unravel the mechanisms underlying the apparent selective pain suppressant effect of BAB. We used the whole-cell patch-clamp technique to record Na(+) currents and action potentials (APs) in dissociated, nociceptive dorsal root ganglion (DRG) cells from rats, two types of peripheral sensory neuron Na(+) channels (Nav1.7 and Nav1.8), and the motor neuron-specific Na(+) channel (Nav1.6) expressed in HEK293 cells. ⋯ At clinically relevant concentrations (1-100μM), BAB is thus a more potent inhibitor of peripheral TTX-sensitive TTXs, Nav1.7 and TTX-resistant NaV1.8 Na(+) channels than of motor neuron axonal Nav1.6 Na(+) channels. BAB had similar effects on the TTXr Na(+) channels of rat DRG neurons and Nav1.8 channels expressed in HEK293 cells. The observed selectivity of BAB in treating cancer pain may be due to an enhanced and selective responsiveness of Na(+) channels in nociceptive neurons to this local anesthetic.