European journal of pharmacology
-
Spinal metabotropic glutamate receptor 5 (mGlu₅ receptor) is known to influence the development of intrathecal morphine antinociceptive tolerance. However, the signaling mechanisms remain unknown. We carried out intrathecal administration of an antisense oligodeoxynucleotide (ODN), which results in reduced expression of spinal mGlu₅ receptor, to determine its effects on morphine tolerance and spinal protein kinase C (PKC) expression. ⋯ We conclude that mGlu₅ receptor participates in the development of morphine tolerance. Expression of spinal PKC (α, γ and ε) at the mRNA and protein levels increased during morphine tolerance. Antisense ODN of mGlu₅ receptor prevented the tolerance and inhibited the altered expression of spinal PKC (α, γ and ε) during the development of tolerance.
-
Tramadol is a centrally acting analgesic that acts via μ-opioid agonism and by blocking the neuronal uptake of norepinephrine and serotonin. Clonidine potentiates the antinociceptive effects of tramadol; however the receptors involved in this potentiation have not been studied. Endothelin ET(A) receptor antagonists potentiate antinociceptive effects of morphine and oxycodone; however the effects of endothelin ET(A) receptor antagonists on tramadol antinociception have not been evaluated. ⋯ Idazoxan produced a more pronounced blockade of potentiation than yohimbine. BMS182874 or BQ123 had no effect on tramadol antinociception, indicating that endothelin ET(A) receptors are not involved in tramadol antinociception in mice. Results demonstrate the involvement of opioid but not α₂-adrenergic/I₂-imidazoline receptors in tramadol antinociception and that opioid, α₂-adrenergic and I₂-imidazoline receptors are involved in clonidine potentiation of tramadol antinociception.
-
Mdivi-1 is an inhibitor of dynamin related protein 1- (drp1)-mediated mitochondrial fission. However, the mechanisms through which this compound interacts directly with ion currents in heart cells remain unknown. In this study, its effects on ion currents and membrane potential in murine HL-1 cardiomyocytes were investigated. ⋯ Similarly, in pituitary GH₃ cells, mdivi-1 was effective in directly suppressing the amplitude of ether-à-go-go-related gene-mediated K⁺ current. Therefore, the lengthening of AP duration and increased firing of APs caused by mdivi-1 can be primarily explained by its inhibition of these K⁺ channels enriched in heart cells. The observed effects of mdivi-1 on ion currents were direct and not associated with its inhibition of mitochondrial division.
-
We hypothesized that Rho-kinase signaling plays a role in mechanical and adhesive mechanisms of neutrophil accumulation in lung. Male C57BL/6 mice were treated with the Rho-kinase inhibitor Y-27632 prior to cecal ligation and puncture (CLP). Lung levels of myeloperoxidase (MPO) and histological tissue damage were determined 6h and 24h after CLP. ⋯ Adoptive transfer experiments revealed that co-incubation of neutrophils with the anti-Mac-1 antibody or cytochalasin B significantly decreased pulmonary accumulation of neutrophils in septic mice. Our data show that targeting Rho-kinase effectively reduces neutrophil recruitment and tissue damage in abdominal sepsis. Moreover, these findings demonstrate that Rho-kinase-dependent neutrophil accumulation in septic lung injury is regulated by both adhesive and mechanical mechanisms.
-
Spinal glial activation contributes to the development and maintenance of chronic pain states, including neuropathic pain of diverse etiologies. Cannabinoid compounds have shown antinociceptive properties in a variety of neuropathic pain models and are emerging as a promising class of drugs to treat neuropathic pain. Thus, the effects of repeated treatment with WIN 55,212-2, a synthetic cannabinoid agonist, were examined throughout the development of paclitaxel-induced peripheral neuropathy. ⋯ Similar to minocycline, repeated administration of WIN 55,212-2 prevented the development of thermal hyperalgesia and mechanical allodynia in paclitaxel-treated rats. WIN 55,212-2 treatment also prevented spinal microglial and astrocytic activation evoked by paclitaxel at day 29 and attenuated the early production of spinal proinflammatory cytokines (interleukin (IL)-1β, IL-6 and tumor necrosis factor (TNF)-α). Our results confirm changes in the reactivity of glial cells during the development of peripheral neuropathy induced by paclitaxel and support a preventive effect of WIN 55,212-2, probably via glial cells reactivity inactivation, on the development of this neuropathy.