Accident; analysis and prevention
-
This study assessed the ability of drivers to detect the deceleration of a preceding vehicle in a simulated vehicle-following task. The size of the preceding vehicles (car, van, or truck) and following speeds (50, 70, or 100 km/h) were systematically varied. Participants selected a preferred following distance by engaging their vehicle's cruise control and when the preceding vehicle began decelerating (no brake lights were illuminated), the participant's braking latency and distances to the lead vehicle were recorded. ⋯ The results indicated that a looming stimulus is capable of redirecting a driver's attention in a vehicle following task and, as with detection of brake lights, a driver's detection of a looming vehicle is compromised in the presence of a distracting task. Interestingly, increases in vehicle size had the effect of decreasing drivers' braking latencies and drivers engaged in the secondary task were significantly closer to the lead vehicle when they began braking, regardless of the size of the leading vehicle. Performance decrements resulting from the secondary task were reflected in a time-to-collision measure but not in optic expansion rate, lending support to earlier arguments that time-to-collision estimates require explicit cognitive judgements while perception of optic expansion may function in a more automatic fashion to redirect a driver's attention when cognitive resources are low or collision is imminent.
-
The empirical basis for legislation to limit cell phones while driving is addressed. A comprehensive meta-analysis of the effects of cell phones on driving performance was performed. A total of 33 studies collected through 2007 that met inclusion criteria yielded 94 effect size estimates, with a total sample size of approximately 2000 participants. ⋯ In addition, drivers using either phone type do not appreciably compensate by giving greater headway or reducing speed. Tests for moderator effects on RT and speed found no statistically significant effect size differences across laboratory, driving simulation and on-road research settings. The implications of the results for legislation and future research are considered.
-
National seatbelt observation surveys indicate commercial vehicle drivers' seatbelt usage is lower than passenger vehicle drivers. Seatbelts are effective at preventing injuries and death following motor vehicle crashes and an important component in decreasing morbidity and mortality related to commercial vehicle crashes. ⋯ Our observations demonstrate a need to increase seatbelt usage among heavy commercial vehicle drivers. Specific programs and resources for intervention programs targeting heavy commercial vehicle drivers are warranted.