Seminars in nuclear medicine
-
The International Atomic Energy Agency (IAEA) developed a comprehensive program-Quality Management Audits in Nuclear Medicine (QUANUM). This program covers all aspects of nuclear medicine practices including, but not limited to, clinical practice, management, operations, and services. The QUANUM program, which includes quality standards detailed in relevant checklists, aims at introducing a culture of comprehensive quality audit processes that are patient oriented, systematic, and outcome based. ⋯ Analysis of results related to clinical activities showed an overall positive impact on both the status and the level of conformance to international standards. Similar results were obtained for the most frequently performed clinical imaging and therapeutic procedures. Our study shows that the implementation of a comprehensive quality management system through the IAEA QUANUM program has a positive impact on nuclear medicine practices.
-
The International Atomic Energy Agency has developed a program, named Quality Management Audits in Nuclear Medicine (QUANUM), to help its Member States to check the status of their nuclear medicine practices and their adherence to international reference standards, covering all aspects of nuclear medicine, including quality assurance/quality control of instrumentation, radiopharmacy (further subdivided into levels 1, 2, and 3, according to complexity of work), radiation safety, clinical applications, as well as managerial aspects. The QUANUM program is based on both internal and external audits and, with specifically developed Excel spreadsheets, it helps assess the level of conformance (LoC) to those previously defined quality standards. According to their level of implementation, the level of conformance to requested standards; 0 (absent) up to 4 (full conformance). ⋯ Clinical services rendered to patients showed a good compliance with international standards, whereas issues related to radiation protection of both staff and patients will require a higher degree of attention. This is a relevant feedback for the International Atomic Energy Agency with regard to the effective translation of safety recommendations into routine practice. Training on drafting and application of standard operating procedures should also be considered a priority.
-
An effective management system that integrates quality management is essential for a modern nuclear medicine practice. The Nuclear Medicine and Diagnostic Imaging Section of the International Atomic Energy Agency (IAEA) has the mission of supporting nuclear medicine practice in low- and middle-income countries and of helping them introduce it in their health-care system, when not yet present. The experience gathered over several years has shown diversified levels of development and varying degrees of quality of practice, among others because of limited professional networking and limited or no opportunities for exchange of experiences. ⋯ Nonconformances will then be prioritized and recommendations will be provided during an exit briefing. The same tool could then be applied to assess any improvement after corrective actions are taken. This is the first comprehensive audit program in nuclear medicine that helps evaluate managerial aspects, safety of patients and workers, clinical practice, and radiopharmacy, and, above all, keeps them under control all together, with the intention of continuous improvement.
-
In this review, we summarize the false-positive and false-negative results of standard 18F-FDG-PET/CT in characterizing musculoskeletal lesions and discussed the added value and limitations of dual-time point imaging (DTPI) and delayed imaging in differentiating malignant from benign musculoskeletal lesions, based on review of the peer-reviewed literature. The quantitative and semiquantitative parameters adopted for DTPI are standardized uptake value (mainly maximum standardized uptake value [SUVmax]) and retention index (RI), calculated as RI (%) = 100% × (SUV [maxD-Delayed] - SUV [maxE-Early])/SUV [maxE-Early], although the criteria and cutoff for diagnosing malignancy in studies have varied considerably. Also, there has been considerable heterogeneity in protocol (time point of delayed imaging), interpretation, and results in dual-time point (DTP) 18F-FDG-PET for differentiating malignant from benign musculoskeletal lesions in various research studies. ⋯ Despite the apparent conflicting reports on the performance, there have been certain common points of agreement regarding DTPI: (1) DTP PET increases the sensitivity of 18F-FDG-PET/CT due to continued clearance of background activity and increasing 18F-FDG accumulation in malignant lesions, when the same diagnostic criteria (as in the initial standard single-time point imaging) are used. Increased sensitivity for lesion detection can be viewed as a strong point of DTP and delayed-time point imaging. (2) The causes for false positives (such as active infectious or inflammatory lesions and locally aggressive benign tumors) and false negatives (eg, low-grade sarcomas) are the major hurdles accounting for reduced diagnostic value of the technique, with overlap of 18F-FDG uptake patterns between benign and malignant musculoskeletal lesions on DTPI. (3) DTPI, however, could still be potentially useful in increasing the confidence of interpretation such as differentiating malignancy from sites of inactive or chronic inflammation, post-treatment viable residue vs necrosis, and certain other benign lesions. (4) Consideration of diagnostic CT component of PET/CT and the patient's clinical picture can lead to increase in specificity of interpretation in a given case scenario. Further systematic research, adoption of uniform protocol, and interpretation criterion could evolve the specific indications and interpretation criteria of DTPI for improved diagnostic accuracy in musculoskeletal lesions and its clinical applications.
-
99mTc-MDP whole-body bone scintigraphy is a highly sensitive imaging method that has been used for decades to evaluate prostate cancer bone metastasis based on its availability and low cost; however, because of accumulation of this radiotracer in degenerative, traumatic, and inflammatory lesions, it suffers from noncomparable specificity. The modality is also used to monitor response to therapy and to predict patients' prognosis. As planar imaging may not give enough information for lesion detection or anatomical localization, it can be supplemented with SPECT to increase image contrast particularly in the evaluation of small and complex skeleton. ⋯ Furthermore, 18F-NaF-PET/CT is able to evaluate response to therapy more accurately and to detect occult bone metastases in lower prostate-specific antigen levels when comparing with conventional 99mTc-labeled whole-body bone scan. Owing to smaller administered dose and shorter half-life of 18F-NaF, the total actual radiation absorbed dose is almost comparable with 99mTc-labeled conventional bone scintigraphy. Hence, we believe that conventional bone scintigraphy would be replaced by 18F-NaF-PET/CT in the assessment of metastatic bone disease where PET/CT scanners are available.