Seminars in nuclear medicine
-
PET combined with cross-sectional anatomical imaging is an essential part of workup for most malignancies, in which CT or MRI provides anatomical context to the functional information from PET. Hybrid imaging with PET/CT has been extensively researched and implemented clinically in the evaluation and management of patients with gynecologic malignancies. Lately, integrated PET/MR scanners have become available. ⋯ MRI provides excellent soft tissue contrast especially in the pelvis and has been proven very useful for imaging prostate and female genital pathologies. The ability of PET to provide accurate functional imaging data with high sensitivity combined with the strength of MRI to provide accurate depiction of anatomy with high contrast and spatial resolution renders combined PET/MRI a desirable method for evaluation of gynecologic malignancies and other pelvic cancers such as prostate cancer. The goal of this article is to provide an overview of the published literature using PET/MRI in gynecologic and prostate cancers.
-
One early application of PET/MRI in clinical practice may be the imaging of head and neck cancers. This is because the morphologic imaging modalities, CT and MR, are recognized as similarly effective tools in cross-sectional oncological imaging of the head and neck. The addition of PET with FDG is believed to enhance the accuracy of both modalities to a similar degree. ⋯ Although some of them might enhance the imaging of head and neck cancer with PET/MR, other functional techniques actually might prove dispensable in the presence of PET. In this overview, we discuss current trends and potential clinical applications of PET/MR in the imaging of head and neck cancers, including clinical protocols. We also discuss potential benefits of implementing functional MR techniques into hybrid PET/MRI of head and neck cancers.
-
Multiple myeloma (MM) is a relatively rare hematologic disorder characterized by proliferation of plasma cells, primarily involving the bone marrow. Extramedullary involvement also occurs with poor prognosis. Asymptomatic plasma cell disorders, monoclonal gammopathy of uncertain significance, and smoldering MM, which do not require therapy, should be distinguished from symptomatic MM, which requires treatment. ⋯ A variety of diagnostic imaging procedures have been employed to assess the extent of disease in MM and to evaluate the response to treatment as well as provide surveillance for the detection of recurrent disease. These include whole-body x-ray, which despite its limitations is regularly used to detect lytic bone lesions; CT radiography; MRI; and a variety of radionuclide imaging procedures, with (18)F-FDG-PET/CT emerging as the radionuclide procedure of choice. Recently, the Durie-Salmon criteria have been upgrade to the Durie-Salmon PLUS system, which includes (18)F-FDG-PET/CT and MRI of the spine and pelvis.
-
The intersection and syndemic interaction between the human immunodeficiency virus (HIV) and tuberculosis (TB) epidemics have global prevalence with devastating morbidity and massive mortality. Using FDG-PET imaging it was shown that in HIV-infected individuals, involvement of the head and neck precedes that of the chest and of the abdomen. The sequence of lymph node involvement observed suggests the existence of a diffusible activation mediator that may be targeted via therapeutic intervention strategies. ⋯ Thus supporting that FDG-PET/CT can demonstrate lesion extent, serve as guide for biopsy with aspiration for culture, assist surgery planning and contribute to follow-up. Limited available data suggest that quantitative FDG-PET findings may allow for prediction or rapid assessment, at 4 months following treatment instigation, of response to antituberculostatics in TB-infected HIV patients. These results and more recent findings suggest a role for FDG-PET/CT imaging in the evaluation of therapeutic response in TB patients.
-
Through its programmatic efforts and its publications, the International Atomic Energy Agency (IAEA) has helped define the role and responsibilities of the nuclear medicine physicist in the practice of nuclear medicine. This paper describes the initiatives that the IAEA has undertaken to support medical physics in nuclear medicine. In 1984, the IAEA provided guidance on how to ensure that the equipment used for detecting, imaging, and quantifying radioactivity is functioning properly (Technical Document [TECDOC]-137, "Quality Control of Nuclear Medicine Instruments"). ⋯ The future of nuclear medicine is driven by advances in instrumentation, by the ever increasing availability of computing power and data storage, and by the development of new radiopharmaceuticals for molecular imaging and therapy. Future developments in nuclear medicine are partially driven by, and will influence, nuclear medicine physics and medical physics. To summarize, the IAEA has established a number of programs to support nuclear medicine physics and will continue to do so through its coordinated research activities, education and training in clinical medical physics, and through programs and meetings to promote standardization and harmonization of QA or QC procedures for imaging and treatment of patients.