Seminars in nuclear medicine
-
Review Comparative Study
Enhancing lung scintigraphy with single-photon emission computed tomography.
Although widely used for many years in the assessment of pulmonary embolism, planar ventilation-perfusion (V/Q) scintigraphy has well-recognized limitations. Single-photon emission computed tomography (SPECT) imaging, which can be readily performed in most modern nuclear medicine centers equipped with multihead gamma cameras, overcomes many of these limitations through its ability to generate 3-dimensional imaging data. V/Q SPECT has been shown to have a greater sensitivity and specificity than planar imaging and has a lower nondiagnostic rate. ⋯ It also involves significantly less radiation dose to breast tissue, an important consideration, particularly in young women. For the V/Q scan to remain relevant in the evaluation of patients with suspected pulmonary embolism, it is essential that image data are obtained so as to maximize their accuracy and diagnostic usefulness. V/Q SPECT can achieve this and, furthermore, may have a role in conditions other than pulmonary embolism, including both clinical and research fields.
-
The role of ultrasonography of the lower extremities for the evaluation of patients with suspected pulmonary embolism has become more clearly defined with time. Ultrasonography is a useful first-line test for pulmonary embolism in clinical circumstances in which radiographic imaging is contraindicated or not readily available (eg, pregnancy). ⋯ Ultrasonography is helpful to exclude a diagnosis of deep vein thrombosis in patients who have nondiagnostic ventilation-perfusion scans. For patients with nondiagnostic ventilation-perfusion scans and negative ultrasonography who are considered clinically highly likely to have pulmonary embolism, it is recommended that computed tomography pulmonary angiography be performed.
-
Epilepsy is a common chronic neurological disorder that is controlled with medication in approximately 70% of cases. When partial seizures are recurrent despite the use of antiepileptic drugs, resection of the epileptogenic cortex may be considered. Nuclear medicine plays an important role in the presurgical assessment of patients with refractory epilepsy. ⋯ Because these tracers are not widely available and the superiority of studying these receptor systems over glucose metabolism in the presurgical evaluation of patients with refractory epilepsy remains to be proven, their use in clinical practice is limited at the moment. Finally, advances in small animal PET scanning allow the in vivo study of the process of epileptogenesis, starting from an initial brain insult to the development of seizures, in animal models of epilepsy. Potential new therapeutic targets may be discovered using this translational approach.
-
Molecular imaging is the visualization, characterization, and measurement of biological processes at the molecular and cellular levels in a living system. At present, positron emission tomography/computed tomography (PET/CT) is one the most rapidly growing areas of medical imaging, with many applications in the clinical management of patients with cancer. Although [(18)F]fluorodeoxyglucose (FDG)-PET/CT imaging provides high specificity and sensitivity in several kinds of cancer and has many applications, it is important to recognize that FDG is not a "specific" radiotracer for imaging malignant disease. ⋯ The approval of clinical indications for FDG-PET in the year 2000 by the Food and Drug Administration, based on a review of literature, was a major breakthrough to the rapid incorporation of PET into nuclear medicine practice, particularly in oncology. Approval of a radiopharmaceutical typically involves submission of a "New Drug Application" by a manufacturer or a company clearly documenting 2 major aspects of the drug: (1) manufacturing of PET drug using current good manufacturing practices and (2) the safety and effectiveness of a drug with specific indications. The potential routine clinical utility of (18)F-labeled PET radiopharmaceuticals depends also on regulatory compliance in addition to documentation of potential safety and efficacy by various investigators.
-
18F-fluorodeoxyglucose positron emission tomography (FDG-PET) and FDG-PET/computed tomography (CT) are becoming increasingly important imaging tools in the noninvasive evaluation and monitoring of children with known or suspected malignant diseases. In this review, we discuss the preparation of children undergoing PET studies and review radiation dosimetry and its implications for family and caregivers. We review the normal distribution of 18F-fluorodeoxyglucose (FDG) in children, common variations of the normal distribution, and various artifacts that may arise. ⋯ Moreover, expansion of the regional distribution of the most common PET radiotracer, FDG, and the introduction of mobile PET units have greatly increased access to this powerful diagnostic imaging technology. Here, we review the clinical applications of PET and PET/CT in pediatric oncology. General considerations in patient preparation and radiation dosimetry will be discussed.