European journal of immunology
-
Studies with perforin-deficient mice firmly established perforin as a key element in cytotoxic T cell (CTL) / natural killer (NK) cell-mediated tumor control but did not reveal the role of granzyme (gzm) A and B. A contribution of gzm in these processes was indicated by earlier in vitro experiments employing purified effector molecules demonstrated that tumor cell apoptosis and death only occurred in the presence of both, perf and gzm. However, recent work using mice deficient in either gzmA, gzmB or both gzm suggested that only perf but neither of the two gzm are critical for tumor surveillance by CTL or NK cells. ⋯ Our results show that in contrast to wild-type mice, mice deficient for both gzm exhibit an uncontrolled tumor growth with a time kinetic similar to that of perforin-deficient mice. Together with the finding that a defect of mice in either gzmA or gzmB alone also leads to an increased susceptibility to tumor growth, at least to a certain extent when compared to wild-type mice, the data clearly indicate that a concerted action of perforin and the two gzm is mandatory for optimal NK cell-mediated tumor control in vivo. Most notably, the in vivo potential of the respective NK cell populations was only reflected by their nucleolytic, but not their cytolytic activities in vitro.
-
Complementary approaches with purified molecules or transfected cytolytic effector cells have suggested that both, granzyme A (gzmA) and granzyme B (gzmB), similarly contribute to CTL-mediatedand perforin (perf)-dependent apoptotic nuclear damage (DNA fragmentation) in target cells. Studies employing gzmA or gzmB single-knockout mice on the other hand indicated that gzmB is the prominent CTL effector molecule for the rapid induction of DNA fragmentation, with gzmA playing only a minor part. We have now taken ex vivo-derived virus-specific or in vitro generated alloreactive CTL from mice deficient in either gzmA or gzmB and a panel of three target cells to reinvestigate this unresolved issue. ⋯ Moreover, CTL-induced apoptosis of a third target cell, MC57G, was partially dependent on both gzmA and gzmB activities. The differential contribution of the two gzms to apoptosis was further verified by their distinct sensitivity tocaspase inhibitors. The data suggest that both, gzmA and gzmB, have a similar potential to induce rapid perf-mediated apoptosis but that their individual contribution to the underlying intracellular processes is dictated by the quality of the target cell.
-
We have recently shown that highly purified lipoteichoic acid (LTA) represents a major immunostimulatory principle of Staphylococcus aureus. In order to test whether this translates to other bacterial species, we extracted and purified LTA from 12 laboratory-grown species. All LTA induced the release of TNF-alpha, IL-1beta, IL-6 and IL-10 in human whole blood. ⋯ IL-12 substitution increased LTA-inducible IFN-gamma release up to 180-fold, suggesting a critical role of poor LTA-inducible IL-12 for IFN-gamma formation. Pretreatment with IFN-gamma rendered galactosamine-sensitized mice sensitive to challenge with LTA. In conclusion, LTA compared to LPS, are weak inducers of IL-12 and subsequent IFN-gamma formation which might explain their lower toxicity in vivo.
-
The innate immune system provides essential information about the presence of infectious danger and signals the activation and instruction of adaptive immunity. The present study addressed the question of whether prior exposure of the innate immune system to LPS may modulate host defense against acute septic peritonitis. We show that LPS priming 4 days, but not 2 days, prior to infection enhances bacterial clearance and improves survival of septic peritonitis. ⋯ Inhibition of neutrophil apoptosis in LPS-primed mice was mediated by soluble factor(s) distinct from G-CSF and GM-CSF. Thus, engagement of pattern recognition systems prior to infection may improve host defense by amplifying the effector cell response of innate immunity. The results also provide in vivo evidence that apoptosis of inflammatory cells represents an important process for the control of host defense to infection.
-
CD23-deficient and anti-CD23 monoclonal antibody-treated mice were used to investigate the role of the low-affinity receptor for IgE (CD23) in allergic airway inflammation and airway hyperresponsiveness (AHR). While there were no significant differences in ovalbumin (OVA)-specific IgE titers and tissue eosinophilia, evaluation of lung function demonstrated that CD23-/- mice showed an increased AHR to methacholine (MCh) when compared to wild-type mice but were completely resistant to the OVA challenge. Anti-CD23 Fab fragment treatment of wild-type mice did not affect the MCh-induced AHR but significantly reduced the OVA-induced airway constriction. These results imply a novel role for CD23 in lung inflammation and suggest that anti-CD23 Fab fragment treatment may be of therapeutic use in allergic asthma.