European journal of immunology
-
For most inflammatory skin diseases topical glucocorticosteroids and traditional oral immunosuppressive drugs remain the principle treatment choices, but this has started to change. A deeper understanding in individual disease pathogenesis, basic immune mechanisms and molecular signalling pathways, together with advances in pharmaceutical drug development, allow us to interfere more precisely with disease-related factors. Some examples of inflammation-controlling interventions include antibodies neutralizing disease-associated cytokines, and small molecules targeting intracellular pathways relevant to cytokine production or cytokine signalling. ⋯ In this review, we focus on chronic inflammatory skin diseases where cytokines using type I/II cytokine receptors play a dominant role in disease pathogenesis and where novel treatments with inhibitors of the JAK/STAT pathway are already under clinical investigation. To better understand the rationale of using JAK/STAT inhibitors in the discussed skin diseases, we give an overview of important genetic and immunological associations with the JAK/STAT pathway and summarize the stage of clinical development of small molecular inhibitors. JAK/STAT inhibitors will presumably find wide application in dermatology, since they can be applied not only systematically but also topically for the treatment of inflammatory skin diseases.
-
Sepsis is a systemic inflammatory response to pathogens and a leading cause of hospital related mortality worldwide. Sphingosine 1-phosphate (S1P) regulates multiple cellular processes potentially involved in the pathogenesis of sepsis, including antigen presentation, lymphocyte egress, and maintenance of vascular integrity. We thus explored the impact of manipulating S1P signaling in experimental polymicrobial sepsis in mice. ⋯ Sepsis-induced upregulation of mRNA expression of cytokines in spleen remained unchanged, but reduction of IL-6, TNF-α, MCP-1, and IL-10 in plasma was evident. DOP and FTY720 treatment significantly reduced levels of Evans blue leakage from blood into liver and lung, decreased hematocrit values, and lowered plasma levels of VEGF-A in septic mice. Collectively, our results indicate that modulation of S1P signaling showed a protective phenotype in experimental sepsis by modulating vascular and immune functions.
-
Plasmacytoid dendritic cells (pDCs) are a major source of type I interferon (IFN) and are important for host defense by sensing microbial DNA via TLR9. pDCs also play a critical role in the pathogenesis of IFN-driven autoimmune diseases. Yet, this autoimmune reaction is caused by the recognition of self-DNA and has been linked to TLR9-independent pathways. Increasing evidence suggests that the cytosolic DNA receptor cyclic GMP-AMP (cGAMP) synthase (cGAS) is a critical component in the detection of pathogens and contributes to autoimmune diseases. ⋯ Our results show that the cGAS-STING pathway is expressed and activated in human pDCs by cytosolic DNA leading to a robust type I IFN response. Direct activation of STING by cyclic dinucleotides including cGAMP also activated pDCs and knockdown of STING abolished this IFN response. These results suggest that pDCs sense cytosolic DNA and cyclic dinucleotides via the cGAS-STING pathway and that targeting this pathway could be of therapeutic interest.
-
Allergic asthma is a chronic inflammation of the airways mediated by an adaptive type 2 immune response. Upon allergen exposure, group 2 innate lymphoid cells (ILC2s) can be rapidly activated and represent an early innate source of IL-5 and IL-13. Here, we used a house dust mite (HDM)-driven asthma mouse model to study the induction of ILC2s in allergic airway inflammation. ⋯ Transfer of in vitro polarized OVA-specific OT-II Th2 cells alone or in combination with Th17 cells followed by OVA and HDM challenge is not sufficient to induce ILC2, despite significant eosinophilic inflammation and T-cell activation. In this asthma model, ILC2s are therefore not an early source of Th2 cytokines, but rather contribute to type 2 inflammation in which Th2 cells play a key role. Taken together, ILC2 induction in HDM-mediated allergic airway inflammation in mice critically depends on activation of T cells.
-
Osteoclast-associated receptor (OSCAR) is an activating receptor expressed by human myeloid cells. Collagen type I (ColI) and collagen type II (ColII) serve as ligands for OSCAR. OSCAR-collagen interaction stimulates RANK-dependent osteoclastogenesis. ⋯ Mononuclear cells from the synovial fluid of RA patients plated on ColII secreted TNF-α and IL-8 in an OSCAR-dependent manner. Global RNA profiling showed that components of multiple signaling pathways relevant to RA pathogenesis are regulated at the transcriptional level by OSCAR in monocytes. Thus, OSCAR can play a proinflammatory role in monocyte-derived cells and may contribute crucially on multiple levels to RA pathogenesis.