The Journal of allergy and clinical immunology
-
J. Allergy Clin. Immunol. · Aug 2020
ReviewMolecular mechanisms and epidemiology of COVID-19 from an allergist's perspective.
The global pandemic caused by the newly described severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused worldwide suffering and death of unimaginable magnitude from coronavirus disease 2019 (COVID-19). The virus is transmitted through aerosol droplets, and causes severe acute respiratory syndrome. SARS-CoV-2 uses the receptor-binding domain of its spike protein S1 to attach to the host angiotensin-converting enzyme 2 receptor in lung and airway cells. ⋯ Numerous clinical trials have been launched to identify effective treatments for COVID-19. Initial data from a placebo-controlled study suggest faster time to recovery in patients on remdesivir; it is now being evaluated in additional controlled studies. As discussed in this review, till effective vaccines and treatments emerge, it is important to understand the scientific rationale of pandemic-mitigation strategies such as wearing facemasks and social distancing, and implement them.
-
Severe acute respiratory syndrome coronavirus 2 infection and development of coronavirus disease 2019 presents a major health care challenge of global dimensions. Laboratory diagnostics of infected patients, and the assessment of immunity against severe acute respiratory syndrome coronavirus 2, presents a major cornerstone in handling the pandemic. ⋯ However, the interpretation of test results depends on many variables and factors, including sensitivity, specificity, potential cross-reactivity and cross-protectivity, the diagnostic value of antibodies of different isotypes, and the use of antibody testing in identification of acutely ill patients or in epidemiological settings. In this article, the recently established COVID-19 Task Force of the German Society for Clinical Chemistry and Laboratory Medicine (DGKL) addresses these issues on the basis of currently available data sets in this rapidly moving field.
-
J. Allergy Clin. Immunol. · Jul 2020
ReviewEosinophil responses during COVID-19 infections and coronavirus vaccination.
Eosinophils are circulating and tissue-resident leukocytes that have potent proinflammatory effects in a number of diseases. Recently, eosinophils have been shown to have various other functions, including immunoregulation and antiviral activity. ⋯ First, do patients with eosinophilia-associated diseases have an altered course of COVID-19? Second, do patients with eosinopenia (now intentionally induced by biological drugs) have unique COVID-19 susceptibility and/or disease course? This is a particularly relevant question because eosinopenia is associated with acute respiratory deterioration during infection with the severe acute respiratory syndrome coronavirus 2, the causative agent of COVID-19. Third, do eosinophils contribute to the lung pathology induced during COVID-19 and will they contribute to immunopotentiation potentially associated with emerging COVID-19 vaccines? Herein, we address these timely questions and project considerations during the emerging COVID-19 pandemic.
-
J. Allergy Clin. Immunol. · Jul 2020
Elevated levels of IL-6 and CRP predict the need for mechanical ventilation in COVID-19.
Coronavirus disease 2019 (COVID-19) can manifest as a viral-induced hyperinflammation with multiorgan involvement. Such patients often experience rapid deterioration and need for mechanical ventilation. Currently, no prospectively validated biomarker of impending respiratory failure is available. ⋯ The maximal level of IL-6, followed by CRP level, was highly predictive of the need for mechanical ventilation. This suggests the possibility of using IL-6 or CRP level to guide escalation of treatment in patients with COVID-19-related hyperinflammatory syndrome.