Anesthesiology
-
Although the clinical properties of propofol have been studied extensively, the pharmacodynamics have not yet been described fully. We studied the propofol concentration-effect relationships for loss of eyelash reflex, loss of consciousness, and hemodynamic changes in 18 female patients, ASA physical status 1, aged 20-49 yr. Propofol was given by computer-controlled infusion. ⋯ The systolic and diastolic blood pressure decreased with increasing blood propofol concentration. The correlation coefficients for the decrease in systolic and diastolic blood pressure versus the blood propofol concentration were r2 = -0.663 and r2 = -0.243, but heart rate did not change. In conclusion, propofol concentrations inducing loss of eyelash reflex are less than those inducing loss of consciousness.
-
Difficult tracheal intubation, often unexpected, has been identified as the commonest contributory factor to anesthetic-related maternal death. The ability to predict such cases preoperatively would be of great value. Preoperative airway assessment and potential risk factors for difficult tracheal intubation were recorded in 1,500 patients undergoing emergency and elective cesarean section under general anesthesia. ⋯ Multivariate analysis removed obesity and missing and single maxillary incisors as risk factors. Obesity was eliminated because of its strong association with short neck. The probability of experiencing a difficult intubation for various combinations of risk factors was determined.(ABSTRACT TRUNCATED AT 250 WORDS)
-
When systemic cooling and rewarming are performed during cardiopulmonary bypass (CPB), the pulmonary artery temperature typically decreases after CPB. This decrease may be rapid enough to cause substantial underestimation of cardiac output (CO) measured by thermodilution, due to changing baseline temperature during the thermodilution measurement. In 16 patients undergoing CPB for coronary artery grafts, digital recording of pulmonary artery temperature was done during room-temperature thermodilution CO (TDCO) injections. ⋯ At 30 min the temperature change was -0.012 degrees C/min (not significant), and CO error was -0.13 +/- 0.14 l/min. Duration of CPB was 104 +/- 30 min, with rewarming for 44 +/- 13 min; the average minimum bladder temperature was 25.1 +/- 2.3 degrees C during cooling and 36.7 +/- 0.7 degrees C at the end of CPB. Under these conditions TDCO measurements within the first 10 min after CPB often underestimate the true CO.
-
Detection and hemodynamic consequences of venous air embolism. Does nitrous oxide make a difference?
Volume expansion of intravascular air by nitrous oxide (N2O) may improve the sensitivity of monitors used to detect venous air embolism (VAE) and/or exacerbate hemodynamic changes following VAE. The purpose of this study was to determine if the administration of N2O alters the sensitivity (i.e., threshold of detection) of monitors used to detect VAE or the hemodynamic consequences of VAE. Twenty-one dogs were monitored for VAE with precordial Doppler ultrasound, transesophageal echocardiography (TEE), changes in end-tidal carbon dioxide tension (ETCO2), and changes in pulmonary artery pressure (PAP). ⋯ Positive responses were defined as follows: unmistakable audible change in frequency on Doppler ultrasound, visualization of densities consistent with air bubbles in the right cardiac chambers or outflow tract on TEE, a decrease in ETCO2 greater than or equal to 2 mmHg, and an increase in mean PAP greater than or equal to 3 mmHg. In group 3 (n = 7), venous air was infused at rates between 0.1 and 0.8 ml.kg-1.min-1 during 1 MAC (total anesthetic level) of isoflurane with and without 50% N2O. In group 3, N2O administration was discontinued immediately upon Doppler detection of VAE and air infusion continued until mean arterial pressure (MAP) decreased by 10 mmHg.(ABSTRACT TRUNCATED AT 250 WORDS)