Anesthesiology
-
Accurate dosing of propofol in children requires accurate knowledge of propofol pharmacokinetics in this population. Improvement in pharmacokinetic accuracy may depend on the incorporation of individual patient factors into the pharmacokinetic model or the use of population approaches to estimating the pharmacokinetic parameters. We investigated whether incorporating individual subject covariates (e.g., age, weight, and gender) into the pharmacokinetic model improved the accuracy. We also investigated whether the use of a mixed-effects population model (e.g., the computer program NONMEM) improved the accuracy of the pharmacokinetic model beyond the accuracy obtained with models estimated using two simple approaches. ⋯ The pharmacokinetics of propofol in children are well described by a standard three-compartment pharmacokinetic model. Weight-adjusting the volumes and clearances significantly improved the accuracy of the pharmacokinetics. Adjusting the pharmacokinetics for inclusion of additional patient covariates or using a mixed-effects model did not further improve the ability of the pharmacokinetic parameters to describe the observations.
-
Carbon dioxide absorption into the blood during laparoscopic surgery using intraperitoneal carbon dioxide insufflation may lead to respiratory acidosis, increased ventilation requirements, and possible serious cardiovascular compromise. The relationship between increased carbon dioxide excretion (VCO2) and intraperitoneal carbon dioxide insufflation pressure has not been well defined. ⋯ By considering Fick's law of diffusion, the initial increase in VCO2 is likely accounted for by increasing peritoneal surface area exposed during insufflation. The continued increase in PaCO2 without a corresponding increase in VCO2 is accounted for by increasing respiratory dead space.
-
Clinically, epidural coadministration of opioids and local anesthetics has provided excellent analgesia for various types of pain. However, information about the interaction of these drugs when administered epidurally is limited. Therefore, we evaluated the antinociceptive interaction between morphine and lidocaine on both somatic and visceral noxious stimuli in the rat. ⋯ These data demonstrate that epidurally coadministered morphine and lidocaine produce synergistic analgesia and prolong the duration of analgesia in tests of somatic and of visceral nociception.