Anesthesiology
-
Randomized Controlled Trial Clinical Trial
Increasing mean skin temperature linearly reduces the core-temperature thresholds for vasoconstriction and shivering in humans.
The contribution of mean skin temperature to the thresholds for sweating and active precapillary vasodilation has been evaluated in numerous human studies. In contrast, the contribution of skin temperature to the control of cold responses such as arteriovenous shunt vasoconstriction and shivering is less well established. Accordingly, the authors tested the hypothesis that mean skin and core temperatures are linearly related at the vasoconstriction and shivering thresholds in men. Because the relation between skin and core temperatures might vary by gender, the cutaneous contribution to thermoregulatory control also was determined in women. ⋯ These data indicate that skin and core temperatures contribute linearly to the control of vasoconstriction and shivering in men and that the cutaneous contributions average approximately 20% in both men and women. The same coefficients thus can be used to compensate for experimental skin temperature manipulations in men and women. However, the cutaneous contributions to each response vary among volunteers; furthermore, the contributions to the two responses vary within volunteers.
-
Randomized Controlled Trial Comparative Study Clinical Trial
Dexmedetomidine premedication attenuates ketamine-induced cardiostimulatory effects and postanesthetic delirium.
Dexmedetomidine is a new potent and highly selective alpha 2-adrenoceptor agonist with sedative-hypnotic and anesthetic sparing properties. Because of its sympathoinhibitory activity, it may prove useful in balancing the cardiostimulatory effects and attenuating the adverse central nervous system effects of ketamine. ⋯ These results suggest that premedication with 2.5 micrograms/kg dexmedetomidine is effective in attenuating the cardiostimulatory and postanesthetic delirium effects of ketamine. However, because of its propensity to cause bradycardia, routine use of an anticholinergic drug should be considered.
-
Randomized Controlled Trial Clinical Trial
Oral clonidine premedication blunts the heart rate response to intravenous atropine in awake children.
Clonidine, which is known to have analgesic and sedative properties, has recently been shown to be an effective preanesthetic medication in children. The drug may cause side effects, including bradycardia and hypotension. This study was conducted to evaluate the ability of intravenous atropine to increase the heart rate (HR) in awake children receiving clonidine preanesthetic medication. ⋯ Oral clonidine premedication (4 micrograms.kg-1) blunted the increase in HR after intravenous atropine in awake children, although clonidine 2 micrograms.kg-1 did not. A larger dose of atropine was required to increase the HR by 20 beats.min-1 in children receiving the premedicant in the larger dose.
-
Succinylcholine-induced masseter muscle rigidity (MMR) is a potentially life-threatening complication of anesthesia and is closely correlated with the heterogeneous disorder malignant hyperthermia (MH) susceptibility. MMR also is identified with a variety of neuromuscular disorders, including the myotonias, that are associated with abnormal in vitro contracture test (IVCT) results. Recently, mutations in the adult skeletal muscle sodium channel alpha-subunit gene (SCN4A) have been shown to cause generalized nondystrophic myotonias, some of which are associated with mild nonspecific symptoms. The purpose of the current investigation was to begin to evaluate the molecular genetic relationship between known mutations in the SCN4A gene, MMR, and the results of the IVCT used to diagnose MH-susceptibility. ⋯ The current report provides direct evidence that succinylcholine-induced MMR, whole-body rigidity, and an abnormal IVCT result are associated with a mutation in the SCN4A gene.
-
Skin temperature is best kept constant when determining response thresholds because both skin and core temperatures contribute to thermoregulatory control. In practice, however, it is difficult to evaluate both warm and cold thresholds while maintaining constant cutaneous temperature. A recent study shows that vasoconstriction and shivering thresholds are a linear function of skin and core temperatures, with skin contributing 20 +/- 6% and 19 +/- 8%, respectively. (Skin temperature has long been known to contribute approximately 10% to the control of sweating). Using these relations, we were able to experimentally manipulate both skin and core temperatures, subsequently compensate for the changes in skin temperature, and finally report the results in terms of calculated core-temperature thresholds at a single-designated skin temperature. ⋯ Advantages of this new model include its being nearly noninvasive and requiring relatively little core-temperature manipulation. Propofol only slightly alters the sweating threshold, but markedly reduces the vasoconstriction and shivering thresholds. Reductions in the shivering and vasoconstriction thresholds are similar; that is, the vasoconstriction-to-shivering range increases only slightly during anesthesia.