Anesthesiology
-
Randomized Controlled Trial Clinical Trial
Clinical sevoflurane metabolism and disposition. II. The role of cytochrome P450 2E1 in fluoride and hexafluoroisopropanol formation.
Sevoflurane is metabolized to free fluoride and hexafluoroisopropanol (HFIP). Cytochrome P450 2E1 is the major isoform responsible for sevoflurane metabolism by human liver microsomes in vitro. This investigation tested the hypothesis that P450 2E1 is predominantly responsible for sevoflurane metabolism in vivo. Disulfiram, which is converted in vivo to a selective inhibitor of P450 2E1, was used as a metabolic probe for P450 2E1. ⋯ Disulfiram, an effective P450 2E1 inhibitor, substantially decreased fluoride ion and HFIP production during and after sevoflurane anesthesia. These results suggest that P450 2E1 is a predominant P450 isoform responsible for human sevoflurane metabolism in vivo.
-
Sevoflurane has low blood and tissue solubility and is metabolized to free fluoride and hexafluoroisopropanol (HFIP). Although sevoflurane uptake and distribution and fluoride formation have been described, the pharmacokinetics of HFIP formation and elimination are incompletely understood. This investigation comprehensively characterized the simultaneous disposition of sevoflurane, fluoride, and HFIP. ⋯ Sevoflurane was rapidly metabolized to fluoride and HFIP, which was rapidly glucuronidated and eliminated in the urine. The overall extent of sevoflurane metabolism was approximately 5%.
-
After upper abdominal surgery, patients have been observed to have alterations in respiratory movements of the rib cage and abdomen and respiratory shifts in pleural and abdominal pressure that suggest dysfunction of the diaphragm. The validity of making such deductions about diaphragm function from these observations is open to discussion. ⋯ Indirect measurements of respiratory muscle action based on pressure and chest wall motion are easier than are assessments based on implanted electromyogram electrodes and sonomicrometers that measure electric activity and muscle length, respectively, directly. Interpretation requires numerous assumptions and detailed analysis of phase relations among the variables. In patients after thoracic surgery, however, these measurements strongly point to a shift in the distribution of motor output toward muscles other than the diaphragm.
-
Aqueous suspensions of the local anesthetic n-butyl-p-aminobenzoate (BAB), epidurally applied in terminal cancer patients, resulted in a sensory blockade, lasting up to several months. To investigate the mechanism of action on the cellular level, the effect of 100 microM BAB on Na+ action potentials and on Na+ currents in dorsal root ganglion neurons from neonatal rats was studied. ⋯ BAB dramatically increased the firing threshold, and in part of the sensory neurons, it blocked the action potential. The inactivation of the fast Na+ channels, but not of the slow Na+ channels, was increased by BAB. Thus, the block of fast Na+ channels by BAB may contribute to epidural analgesia. At exposure times of 10 min, the effect of BAB was not reversible. This probably originates from its high lipid-solubility, which may be an important factor in determining the duration of the block in vivo.