Anesthesiology
-
Randomized Controlled Trial Clinical Trial
Dose responses for neostigmine and edrophonium as antagonists of mivacurium in adults and children.
Reversal of neuromuscular blockade induced with pancuronium, d-tubocurarine, or doxacurium is achieved using smaller doses of neostigmine in adults than in children. Also, pancuronium- and doxacurium-induced blockade is reversed with smaller doses of edrophonium in children than in adults. The purpose of this study was to compare the spontaneous and neostigmine- and edrophonium-assisted recovery of mivacurium-induced neuromuscular block in adults and children. ⋯ Spontaneous recovery from mivacurium- induced neuromuscular block is more rapid in children than in adults. Ten minutes after attempted reversal, recovery is accelerated by edrophonium and usually by neostigmine in adults but not in children. Thus, when reversal is required, edrophonium may be preferred to neostigmine.
-
Clinical Trial
Magnetic resonance imaging of the upper airway. Effects of propofol anesthesia and nasal continuous positive airway pressure in humans.
Anesthetic agents inhibit the respiratory activity of upper airway muscles more than the diaphragm, creating a potential for narrowing or complete closure of the pharyngeal airway during anesthesia. Because the underlying mechanisms leading to airway obstruction in sleep apnea and during anesthesia are similar, it was hypothesized that anesthesia-induced pharyngeal narrowing could be counteracted by applying nasal continuous positive airway pressure (CPAP). ⋯ In contrast to the traditional view that relaxation of the tongue causes airway obstruction, this study suggests that airway closure occurs at the level of the soft palate. Application of nasal CPAP can counteract an anesthesia-induced pharyngeal narrowing by functioning as a pneumatic splint. This is supported by the observed reduction in anteroposterior diameter at the level of the soft palate during propofol anesthesia and the subsequent increase in this measurement during nasal CPAP application.
-
Clinical Trial Controlled Clinical Trial
Pharmacokinetics of cisatracurium in patients receiving nitrous oxide/opioid/barbiturate anesthesia.
Cisatracurium, one of the ten isomers in atracurium, is a nondepolarizing muscle relaxant with an intermediate duration of action. It is more potent and less likely to release histamine than atracurium. As one of the isomers composing atracurium, it presumably undergoes Hofmann elimination. This study was conducted to describe the pharmacokinetics of cisatracurium and its metabolites and to determine the dose proportionality of cisatracurium after administration of 2 or 4 times the ED(95). ⋯ Cisatracurium undergoes Hofmann elimination to form laudanosine. The pharmacokinetics of cisatracurium are independent of dose after single intravenous doses of 0.1 and 0.2 mg x kg(-1).
-
Prior human studies have shown that halothane attenuates activity in the parasternal intercostal muscle and enhances phasic activity in respiratory muscles with expiratory actions. This expiratory muscle activity could contribute to reductions in the functional residual capacity produced by anesthesia. Termination of this activity could contribute to the maintenance of inspiratory rib cage expansion. The purpose of this study was to estimate in humans the mechanical significance of expiratory muscle activity during halothane anesthesia and to search for the presence of scalene muscle activity during halothane anesthesia that might contribute to inspiratory rib cage expansion. ⋯ In humans anesthetized with 1.2 MAC end-tidal halothane, there are marked interindividual differences in respiratory muscle use during quiet breathing that may be related to sex; phasic inspiratory scalene muscle and parasternal intercostal muscle activity may contribute to inspiratory rib cage expansion in some subjects; and when present, expiratory muscle activity significantly constricts the rib cage and contributes to reductions in functional residual capacity caused by halothane anesthesia.