Anesthesiology
-
Serious complications related to regional anesthesia have previously been described primarily in case reports and retrospective surveys. The authors prospectively evaluated a multicenter series of regional anesthetics, using preplanned criteria to measure the incidence and characteristics of associated serious complications. ⋯ (1) The incidence of cardiac arrest and neurologic injury related to regional anesthesia were very low, but both were more than three SDs greater after spinal anesthesia than after other regional procedures. (2) Two thirds of the patients with neurologic deficits had either a paresthesia during needle placement or pain on injection. (3) Seventy-five percent of the neurologic deficits after nontraumatic spinal anesthesia occurred in patients who had received hyperbaric lidocaine, 5%.
-
Research has suggested that nitrous oxide may be harmful to ischemic neurons; however, the evidence for this is equivocal. The authors used rat hippocampal slices to examine the effects of nitrous oxide on neuronal hypoxic damage. ⋯ Nitrous oxide impaired electrophysiologic recovery of hippocampal slices after severe hypoxia. Nitrous oxide did not cause significant changes in the biochemical parameters examined.
-
Comparative Study
Effects of desflurane in rat myocardium: comparison with isoflurane and halothane.
The cardiovascular effects of desflurane have been investigated in several in vivo animal and human studies. To determine the possible contributions of myocardial depression, the effects of desflurane on various contractile parameters in isolated cardiac papillary muscles were compared with those of isoflurane and halothane. ⋯ When compared with isoflurane, desflurane induced a moderate positive inotropic effect related to intramyocardial catecholamine release. After adrenoceptor blockade, desflurane induced a negative inotropic effect comparable with that induced by isoflurane.
-
The effects of inhalational anesthetics on the microcirculation, including leukocyte dynamics, remain to be clarified. The authors investigated halothane and sevoflurane anesthesia to determine if these agents evoked leukocyte adhesion through endothelial cell-dependent mechanisms involving such adhesion molecules. ⋯ Halothane or sevoflurane anesthesia induces venular leukocyte rolling and adhesion: P-selectin upregulation plays a crucial role in leukocyte rolling and adhesion during sevoflurane anesthesia, whereas low-flow perfusion is likely to evoke ICAM-1-dependent leukocyte adhesion during halothane anesthesia.