Anesthesiology
-
The effects of long-term administration of the tricyclic antidepressant agent desipramine on the hypnotic, antinociceptive, anesthetic-sparing, and central norepinephrine turnover suppressant action of short-term dexmedetomidine, a highly selective alpha2-adrenergic agonist, were studied in rats. ⋯ These data indicate that treatment with desipramine induces hyporesponsiveness to the hypnotic, analgesic, and minimum anesthetic concentration-reducing, but not to the suppression of central norepinephrine turnover, properties of dexmedetomidine. The hyporesponsiveness appears to involve an alpha1-adrenergic mechanism.
-
Volatile general anesthetics depress neuronal activity in the mammalian central nervous system and enhance inhibitory Cl- currents flowing across the gamma-aminobutyric acid A (GABA(A)) receptor-ion channel complex. The extent to which an increase in GABA(A)-mediated synaptic inhibition contributes to the decrease in neuronal firing must be determined, because many further effects of these agents have been reported on the molecular level. ⋯ Together with recent investigations, our results provide evidence that halothane, isoflurane, and enflurane reduced spontaneous action potential firing of neocortical neurons in cultured brain slices mainly by increasing GABA(A)-mediated synaptic inhibition. At concentrations, approximately one half the EC50 for general anesthesia, volatile anesthetics increased overall GABA(A)-mediated synaptic inhibition about twofold, thus decreasing spontaneous action potential firing by half.