Anesthesiology
-
The opioid meperidine induces spinal anesthesia and blocks nerve action potentials, suggesting it is a local anesthetic. However, whether it produces effective clinical local anesthesia in peripheral nerves remains unclear. Classification as a local anesthetic requires clinical local anesthesia but also blockade of voltage-dependent Na+ channels with characteristic features (tonic and phasic blockade and a negative shift in the voltage-dependence of steady-state inactivation) involving an intrapore receptor. The authors tested for these molecular pharmacologic features to explore whether meperidine is a local anesthetic. ⋯ Meperidine blocks Na+ channels with molecular pharmacologic features of a local anesthetic. The findings support classification of meperidine as a local anesthetic but with less overall potency than lidocaine.
-
Recent evidence indicates that volatile anesthetics exert protective effects during myocardial ischemia and reperfusion. The authors tested the hypothesis that sevoflurane decreases myocardial infarct size by activating adenosine triphosphate-sensitive potassium (K(ATP)) channels and reduces the time threshold of ischemic preconditioning necessary to protect against infarction. ⋯ Sevoflurane reduces myocardial infarct size by activating K(ATP) channels and reduces the time threshold for ischemic preconditioning independent of hemodynamic effects in vivo.
-
The effects of propofol, remifentanil, and their combination on phrenic nerve activity (PNA), resting heart rate (HR), mean arterial pressure (MAP), and nociceptive cardiovascular responses were studied in rabbits. ⋯ PNA was abolished by propofol and remifentanil, alone and in combination, before significant depression of nociceptive pressor responses occurred. Their combined effects on PNA, HR, MAP, and deltaMAP are greater than additive, ie., synergistic. Unlike propofol, remifentanil obtunded pressor responses more than the resting circulation.
-
Cerebral embolization is a primary cause of cardiac surgical neurologic morbidity. During cardiopulmonary bypass (CPB), there are well-defined periods of embolic risk. In theory, cerebral embolization might be reduced by an increase in pump flow during these periods. The purpose of this study was to determine the CPB flow-embolization relation in a canine model. ⋯ Cerebral embolization is determined by the CPB flow. At an unchanged mean arterial pressure, as pump flow is reduced, a progressively greater proportion of that flow is delivered to the brain.