Anesthesiology
-
Inhaled nitric oxide is often used in patients with adult respiratory distress syndrome. However, nitric oxide also may be significantly toxic, especially if administered concurrently with hyperoxia. The authors evaluated the isolated effect of nitric oxide and the combined effects of nitric oxide and hyperoxia on lung injury in rats after acid aspiration. ⋯ These results show that inhaled nitric oxide at 80 ppm for a short duration (5 h) increases the severity of the inflammatory microvascular lung injury after acid aspiration. The pulmonary damage is exacerbated further in the presence of high oxygen concentrations. Although lower concentrations of nitric oxide did not increase the extent of lung injury, longer exposure times need to be assessed.
-
The effect of volatile anesthetics on cerebral blood flow depends on the balance between the indirect vasoconstrictive action secondary to flow-metabolism coupling and the agent's intrinsic vasodilatory action. This study compared the direct cerebral vasodilatory actions of 0.5 and 1.5 minimum alveolar concentration (MAC) sevoflurane and isoflurane during an propofol-induced isoelectric electroencephalogram. ⋯ In common with other volatile anesthetic agents, sevoflurane has an intrinsic dose-dependent cerebral vasodilatory effect. However, this effect is less than that of isoflurane.
-
The local anesthetic bupivacaine exists in two stereoisomeric forms, R(+)- and S(-)-bupivacaine. Because of its lower cardiac and central nervous system toxicity, attempts were made recently to introduce S(-)-bupivacaine into clinical anesthesia. We investigated stereoselective actions of R(+)-and S(-)-bupivacaine toward two local anesthetic-sensitive ion channels in peripheral nerve, the Na+ and the flicker K+ channel. ⋯ Bupivacaine block of Na+ channels shows no salient stereoselectivity. Block of flicker K+ channels has the highest stereoselectivity ratio of bupivacaine action known so far. This stereoselectivity derives predominantly from a difference in k(-1), suggesting a tight fit between R(+)-bupivacaine and the binding site. The flicker K+ channel may play an important role in yet unknown toxic mechanisms of R(+)-bupivacaine.