Anesthesiology
-
Randomized Controlled Trial Clinical Trial
Reduced need for vasopressors in patients receiving aprotinin during orthotopic liver transplantation.
Graft reperfusion in orthotopic liver transplantation is often associated with significant hemodynamic changes, including decreased systemic vascular resistance and arterial blood pressure. Vasopressive drugs are often required to maintain adequate perfusion pressure during the early postreperfusion period. The exact mechanism of this postreperfusion syndrome is unknown, but release of bradykinin, a potent vasodilatator, via the kallikrein system may play a role. Aprotinin is a broad-spectrum inhibitor of serine proteases such as kallikrein and therefore may ameliorate the postreperfusion syndrome and reduce the need for vasopressors. ⋯ Prophylactic use of aprotinin ameliorates the postreperfusion syndrome in orthotopic liver transplantation, as reflected by a significant reduction in vasopressor requirements.
-
Recent studies have determined that an initial rectal acetaminophen dose of approximately 40 mg/kg is needed in children to achieve target antipyretic serum concentrations. The timing and amount of subsequent doses after a 40-mg/kg dose has not been clarified for this route of administration. Based on the authors' previous pharmacokinetic data, they examined whether a 40-mg/kg loading dose followed by 20-mg/kg doses at 6-h intervals maintain serum concentrations within the target range of 10-20 microg/ml, without evidence of accumulation. ⋯ A rectal acetaminophen loading dose of 40 mg/kg followed by 20-mg/kg doses every 6 h results in serum concentrations centered at the target range of 10-20 microg/ml. There was large interindividual variability in pharmacokinetic characteristics. There was no evidence of accumulation during the 24-h sampling period.
-
Carbon monoxide (CO) is produced by reaction of isoflurane, enflurane, and desflurane in desiccated carbon dioxide absorbents. The inspiratory CO concentration depends on the dryness and identity of the absorbent and anesthetic. The adaptation of existing mathematical models to a rebreathing circuit allows identification of patient factors that predispose to more severe exposures, as identified by carboxyhemoglobin concentration. ⋯ This model predicts that patients with low hemoglobin quantities will have more severe CO exposures based on the attainment of a higher carboxyhemoglobin concentration. This includes patients of small size (pediatric population) and patients with anemia.