Anesthesiology
-
Clinical Trial
Effectiveness of epidural blood patch in the management of post-dural puncture headache.
Lumbar epidural blood patch (EBP) is a common treatment of post-dural puncture headache, but its effectiveness and mode of action remain a matter of debate. The aim of this study was to assess both the effectiveness and the predictive factors of failure of EBP on severe post-dural puncture headache. ⋯ Epidural blood patch is an effective treatment of severe post-dural puncture headache. Its effectiveness is decreased if dura mater puncture is caused by a large bore needle.
-
Although ether, alcohol, and halogenated alkane anesthetics potentiate agonist actions or increase the apparent agonist affinity of ligand-gated ion channels at clinically relevant concentrations, the effects of nonhalogenated alkane anesthetics on ligand-gated ion channels have not been studied. The current study assessed the abilities of two representative nonhalogenated alkane anesthetics (cyclopropane and butane) to potentiate agonist actions or increase the apparent agonist affinity of two representative ligand-gated ion channels: the nicotinic acetylcholine receptor and y-aminobutyric acid type A (GABA(A)) receptor. ⋯ Our results suggest that the in vivo central nervous system depressant effects of nonhalogenated alkane anesthetics do not result from their abilities to potentiate agonist actions on ligand-gated ion channels. Other targets or mechanisms more likely account for the anesthetic activities of nonhalogenated alkane anesthetics.
-
Hypoxemia is common in septic acute lung failure. Therapy is mainly supportive, and most trials using specific inhibitors of key inflammatory mediators (ie., tumor necrosis factor alpha, interleukin 1) have failed to prove beneficial. The authors investigated if a nonspecific blood purification technique, using zero-balanced high-volume continuous venovenous hemofiltration (CWH), might improve arterial oxygenation in a fluid-resuscitated porcine model of endotoxin-induced acute lung injury. ⋯ These results suggest that nonspecific blood purification with high-volume CWH improves arterial oxygenation and lung function in endotoxin-induced acute lung injury in pigs, independent of improved hemodynamics, fluid removal, or body temperature.
-
Findings to date indicate that nitrous oxide exerts its antinociceptive effect by activating descending noradrenergic neurons. The mechanism whereby descending inhibitory neurons, including noradrenergic neurons, produce antinociceptive effect remains unclear. Using c-Fos protein as a marker for neuronal activation, we examined whether spinal cord neurons activated by nitrous oxide are y-aminobutyric acid-mediated (GABAergic) neurons. ⋯ Exposure to nitrous oxide activates GABAergic neurons in the spinal cord. The dose-dependence of GABAergic neuronal activation in the Fischer rats and its absence in the Lewis rat correlate with antinociceptive responses previously reported in these same circumstances. Together, we interpret these data to indicate that activation of GABAergic neurons in the spinal cord are involved in the antinociceptive action of nitrous oxide.
-
Clinical Trial
Auditory evoked potential index predicts the depth of sedation and movement in response to skin incision during sevoflurane anesthesia.
The auditory evoked potential (AEP) index, which is a single numerical parameter derived from the AEP in real time and which describes the underlying morphology of the AEP, has been studied as a monitor of anesthetic depth. The current study was designed to evaluate the accuracy of AEPindex for predicting depth of sedation and anesthesia during sevoflurane anesthesia. ⋯ Auditory evoked potential index can be a guide to the depth of sedation and movement in response to skin incision during sevoflurane anesthesia.