Anesthesiology
-
Randomized Controlled Trial Clinical Trial
Magnesium sulfate does not reduce postoperative analgesic requirements.
Because magnesium blocks the N-methyl-D-aspartate receptor and its associated ion channels, it can prevent central sensitization caused by peripheral nociceptive stimulation. However, transport of magnesium from blood to cerebrospinal fluid (CSF) across the blood-brain barrier is limited in normal humans. The current study was designed to evaluate whether perioperative intravenous magnesium sulfate infusion affects postoperative pain. ⋯ Perioperative intravenous administration of magnesium sulfate did not increase CSF magnesium concentration and had no effects on postoperative pain. However, an inverse relation between cumulative postoperative analgesic consumption and the CSF magnesium concentration was observed. These results suggest that perioperative intravenous magnesium infusion may not be useful for preventing postoperative pain.
-
Malignant hyperthermia (MH) is a disorder of skeletal muscle manifested as a life-threatening hypermetabolic crisis in susceptible individuals after exposure to inhalational anesthetics and depolarizing muscle relaxants. Mutations in the gene encoding the skeletal muscle ryanodine receptor (RYR1) are considered a common cause of the disorder, and, to date, more than 20 RYR1 mutations have been reported in European and Canadian families. Some studies suggest that differences may exist in the frequencies and distribution of mutations in the RYR1 gene between European and North American MH families the frequency and distribution of mutations in the RYR1 gene. ⋯ Three novel candidate mutations in the RYR1 gene were identified in these MH patients. The frequency and distribution of RYR1 mutations observed in this North American MH population was markedly different from that previously identified in Europe. Larger-scale studies are necessary to clarify the type and frequency of mutations in RYR1 associated with MH in North American families.
-
Activation of mast cells and systemic release of histamine are major side effects of intravenously administered muscle relaxants. In the current study, dermal microdialysis was used for the investigation of mast cell activation by muscle relaxants. Dermal microdialysis enabled simultaneous assessment of mediator release, vascular reactions, and sensory effects induced by intradermal application of muscle relaxants without systemic side effects. ⋯ Dermal microdialysis has been successfully used to simultaneously assess mediator release, vascular reactions, and sensory effects. The different pattern of tryptase release by isoquinolines and aminosteroids suggests different mechanisms of mast cell activation.
-
Pharmacokinetic-pharmacodynamic (PKPD) modeling can be used to characterize the concentration-effect relation of drugs. If the concentration-effect relation of a hypnotic drug is stable over time, an effect parameter derived from the processed electroencephalographic signal may be used to control the infusion for hypnosis. Therefore, the stability of the propofol concentration-electroencephalographic effect relation over time was investigated under non-steady state conditions. ⋯ The relation between blood propofol concentrations and the electroencephalographic effect under non-steady state conditions is not stable over time and is too complex to be modeled by any of the applied PKPD models.