Anesthesiology
-
Insufficient data exist on the production of compound A during closed-system sevoflurane administration with newer carbon dioxide absorbents. ⋯ With KOH-free (but sodium hydroxide [NaOH]-containing) soda limes even higher compound A concentrations are recorded than with standard Sodasorb. Only by eliminating KOH as well as NaOH from the absorbent (Amsorb and lithium hydroxide) is no compound A produced.
-
The effects of volatile anesthetics on left atrial function in vivo have not been described. The authors tested the hypothesis that desflurane, sevoflurane, and isoflurane alter left atrial mechanics evaluated with invasively derived pressure-volume relations. ⋯ The results indicate that desflurane, sevoflurane, and isoflurane depress left atrial contractility, delay relaxation, reduce chamber stiffness, preserve reservoir and conduit function, and impair left atrial-left ventricular coupling in vivo.
-
Endotracheal intubation in patients undergoing general anesthesia often causes hypertension and tachycardia, which may be altered when the efferent sympathetic fiber to the cardiovascular system is interrupted. The aim of the current study was to investigate the effects of different levels of spinal cord injury on the cardiovascular responses to intubation. ⋯ The cardiovascular and plasma catecholamine changes associated with endotracheal intubation may differ according to the affected level in patients with complete spinal cord injuries.
-
Axonal transport plays a critical role in supplying materials for a variety of neuronal functions such as morphogenetic plasticity, synaptic transmission, and cell survival. In the current study, the authors investigated the effects of the analgesic agent lidocaine on axonal transport in neurites of cultured mouse dorsal root ganglion neurons. In relation to their effects, the effects of lidocaine on the growth rate of the neurite were also examined. ⋯ Low-concentration lidocaine rapidly inhibits axonal transport and neurite growth via activation of calmodulin-dependent protein kinase II.
-
Volatile anesthetics are known to ameliorate experimental ischemic brain injury. A possible mechanism is inhibition of excitotoxic cascades induced by excessive glutamatergic stimulation. This study examined interactions between volatile anesthetics and excitotoxic stress. ⋯ Volatile anesthetics offer similar protection against excitotoxicity, but this protection is substantially less than that provided by selective NMDA receptor antagonism. Peak effects of NMDA receptor antagonism were observed at volatile anesthetic concentrations substantially greater than those used clinically.