Anesthesiology
-
Multicenter Study
Evaluation of anesthesia residents using mannequin-based simulation: a multiinstitutional study.
Anesthesia simulators can generate reproducible, standardized clinical scenarios for instruction and evaluation purposes. Valid and reliable simulated scenarios and grading systems must be developed to use simulation for evaluation of anesthesia residents. ⋯ Numerous management errors were identified in this study of anesthesia residents from 10 institutions. Further attention to these problems may benefit residency training since advanced residents continued to make these errors. Evaluation of anesthesia residents using mannequin-based simulators shows promise, adding a new dimension to current assessment methods. Further improvements are necessary in the simulation scenarios and grading criteria before mannequin-based simulation is used for accreditation purposes.
-
The potential benefit of propofol dose regimens that use physiologic pharmacokinetic modeling to target the brain has been demonstrated in animals, but no data are available on the rate of propofol distribution to the brain in humans. This study measured the brain uptake of propofol in humans and the simultaneous effects on electroencephalography, cerebral blood flow velocity (V(mca)), and cerebral oxygen extraction. ⋯ Description of brain distribution of propofol will allow development of physiologic pharmacokinetic models for propofol and evaluation of dose regimens that target the brain.
-
Clinical Trial
Changes of electroencephalographic bicoherence during isoflurane anesthesia combined with epidural anesthesia.
The authors previously reported that, during isoflurane anesthesia, electroencephalographic bicoherence values changed in a fairly restricted region of frequency versus frequency space. The aim of the current study was to clarify the relation between electroencephalographic bicoherence and the isoflurane concentration. ⋯ Changes in the height of two electroencephalographic bicoherence peaks correlated well with isoflurane concentration.
-
Despite improvements in neonatal heart surgery, neurologic complications continue to occur from low-flow cardiopulmonary bypass (LF-CPB) and deep hypothermic circulatory arrest (DHCA). Desflurane confers neuroprotection against ischemia at normothermia and for DHCA. This study compared neurologic outcome of a desflurane-based with a fentanyl-based anesthetic for LF-CPB. ⋯ Desflurane improved neurologic outcome following LF-CPB compared with F/D in piglets, indicated by less functional disability and less histologic damage, especially with Des9. Desflurane may have produced cardiac protection, suggested by a lower incidence of ventricular fibrillation.
-
To investigate the mechanism by which rare cases of spinal local anesthetic (LA) neurotoxicity occur, we have tested the hypotheses that LAs elevate cytoplasmic calcium (Ca2+(cyt)), that this is associated with a neurotoxic effect, and that lidocaine and bupivacaine differ in their neurotoxicity. ⋯ In this model, lidocaine greater than 2.5% elevates Ca2+(cyt) to toxic levels. Bupivacaine and lower concentrations of lidocaine transiently alter Ca2+(cyt) homeostasis for several minutes, but without an immediate neurotoxic effect within 60 min.