Anesthesiology
-
Clinical Trial
Relationship between intracranial pressure and critical closing pressure in patients with neurotrauma.
The driving pressure gradient for cerebral perfusion is the difference between mean arterial pressure (MAP) and critical closing pressure (CCP = zero flow pressure). Therefore, determination of the difference between MAP and CCP should provide an appropriate monitoring of the effective cerebral perfusion pressure (CPP(eff)). Based on this concept, the authors compared conventional measurements of cerebral perfusion pressure by MAP and intracranial pressure (CPP(ICP)) with CPP(eff). ⋯ Assuming that CPP(eff) (MAP - CCP) takes into account more determinants of cerebral downstream pressure, in individual cases, the actual gold standard of CPP determination (MAP - ICP) might overestimate the CPP(eff) of therapeutic significance.
-
The study was designed to compare the effects of equimolar concentrations of racemic bupivacaine, levobupivacaine, and ropivacaine on ventricular conduction, anisotropy, duration and homogeneity of refractoriness, and wavelengths, and to provide a potency ratio for effects on conduction velocity. ⋯ Differences among racemic bupivacaine, levobupivacaine, and ropivacaine at equimolar concentrations are mainly caused by the use-dependent effects on conduction velocities and the concentration-dependent effects on ventricular effective refractory period. Therefore, one must take into account the corresponding pacing rates when comparing the potency ratios of local anesthetics.
-
The authors modeled the influence of remifentanil on the dynamics of sevoflurane using three parameters derived from the electroencephalogram: 95% spectral edge frequency (SEF), canonical univariate parameter (CUP), and Bispectral Index (BIS). ⋯ Remifentanil accelerates sevoflurane blood-brain equilibration without affecting its hypnotic potency as determined from BIS and CUP. In terms of R(2), the authors' pharmacodynamic model describes the anesthetic-BIS relation best.
-
Clinical Trial
Morphologic changes in the upper airway of children during awakening from propofol administration.
The purpose of this study was to determine the morphologic changes that occur in the upper airway of children during awakening from propofol sedation. ⋯ The dimensions of the upper airways of children change shape significantly on awakening from propofol sedation. When sedated, the upper airway is oblong shaped, with the A-P diameter larger than the transverse diameter. On awakening, the shape of the upper airway in most children changed such that the transverse diameter was larger. Cross-sectional areas between sedated and awakening states were unchanged. These changes may reflect the differential effects of propofol on upper airway musculature during awakening.