Anesthesiology
-
Comparative Study
Differential effects of volatile anesthetics on M3 muscarinic receptor coupling to the Galphaq heterotrimeric G protein.
Halothane inhibits airway smooth muscle contraction in part by inhibiting the functional coupling between muscarinic receptors and one of its cognate heterotrimeric G proteins, Galphaq. Based on previous studies indicating a more potent effect of halothane and sevoflurane on airway smooth muscle contraction compared with isoflurane, the current study hypothesized that at anesthetic concentrations of 2 minimum alveolar concentration (MAC) or less, halothane and sevoflurane but not isoflurane inhibit acetylcholine-promoted Galphaq guanosine nucleotide exchange. ⋯ The differential effects of volatile anesthetics on acetylcholine-promoted guanosine nucleotide exchange at Galphaq are consistent with the apparent more potent direct effect of halothane and sevoflurane compared with isoflurane on muscarinic receptor-mediated contraction of isolated airway smooth muscle. These differential effects also suggest a mode of anesthetic action that could be due to anesthetic-protein interactions and not simply anesthetic accumulation in the lipid membrane.
-
Intensive insulin therapy may reduce mortality and morbidity in selected surgical patients. Intensive insulin therapy also reduced the SD of blood glucose concentration, an accepted measure of variability. There is no information on the possible significance of variability in glucose concentration. ⋯ The SD of glucose concentration is a significant independent predictor of intensive care unit and hospital mortality. Decreasing the variability of blood glucose concentration might be an important aspect of glucose management.
-
Although local anesthetics (LAs) are hyperbaric at room temperature, density drops within minutes after administration into the subarachnoid space. LAs become hypobaric and therefore may cranially ascend during spinal anesthesia in an uncontrolled manner. The authors hypothesized that temperature and density of LA solutions have a nonlinear relation that may be described by a polynomial equation, and that conversion of this equation may provide the temperature at which individual LAs are isobaric. ⋯ Sophisticated measurements and mathematic models now allow calculation of the ideal injection temperature of LAs and, thus, even better control of LA distribution within the cerebrospinal fluid. The given formulae allow the adaptation on subpopulations with varying cerebrospinal fluid density.