Anesthesiology
-
In previous work, extravascular expansion was observed to be enhanced by isoflurane anesthesia in sheep when a crystalloid bolus was administered. The aim of the current study was to further elaborate these investigations to humans and to explore the use of population kinetics in the analysis of fluid shifts. ⋯ Fluid retention after rapid infusion of 0.9% saline was prominent in both awake and isoflurane-anesthetized subjects. Altered kinetics of infused 0.9% saline during isoflurane anesthesia was expressed as reduced clearance and a slower distribution, resulting in a small but significant increase in fluid accumulation in the body fluid compartments. These changes may be due to the associated decreasing of mean arterial pressure and increased release of renin and aldosterone.
-
Characterizing the evolution of protein C concentrations in critically ill patients may help in identifying high risk groups and potential therapeutic targets. The authors investigated the time courses of protein C concentrations and their relation to the presence of sepsis, organ dysfunction/failure, and outcome. ⋯ In critically ill surgical patients, protein C concentrations were generally low, associated with organ dysfunction/failure, and independently associated with a higher risk of ICU mortality.
-
Voltage-gated Na channels modulate membrane excitability in excitable tissues. Inhibition of Na channels has been implicated in the effects of volatile anesthetics on both nervous and peripheral excitable tissues. The authors investigated isoform-selective effects of isoflurane on the major Na channel isoforms expressed in excitable tissues. ⋯ Two principal mechanisms contribute to Na channel inhibition by isoflurane: enhanced inactivation due to a hyperpolarizing shift in the voltage dependence of steady state fast inactivation (Nav1.5 approximately Nav1.4 > Nav1.2) and tonic block (Nav1.2 > Nav1.4 approximately Nav1.5). These novel mechanistic differences observed between isoforms suggest a potential pharmacologic basis for discrimination between Na channel isoforms to enhance anesthetic specificity.
-
Despite prolongation of the QTc interval in humans during sevoflurane anesthesia, little is known about the mechanisms that underlie these actions. In rat ventricular myocytes, the effect of sevoflurane on action potential duration and underlying electrophysiologic mechanisms were investigated. ⋯ Action potential prolongation by clinically relevant concentrations of sevoflurane is due to the suppression of transient outward K current in rat ventricular myocytes.