Anesthesiology
-
One underexploited property of anesthetics is their ability to probe neuronal regulation of arousal. At appropriate doses, anesthetics reversibly obtund conscious perception. However, individual anesthetic agents may accomplish this by altering the function of distinct neuronal populations. Previously the authors showed that isoflurane and sevoflurane inhibit orexinergic neurons, delaying reintegration of sensory perception as denoted by emergence. Here the authors study the effects of halothane. As a halogenated alkane, halothane differs structurally, has a nonoverlapping series of molecular binding partners, and differentially modulates electrophysiologic properties of several ion channels when compared with its halogenated ether relatives. ⋯ Coordinated inhibition of hypothalamic orexinergic and locus coeruleus noradrenergic neurons is not required for anesthetic induction. Normal emergence from halothane-induced hypnosis in orexin-deficient mice suggests that additional wake-promoting systems likely remain active during general anesthesia produced by halothane.