Anesthesiology
-
Development of coagulopathy is a serious complication arising from isolated traumatic brain injury, and it predicts poor outcome. The underlying mechanism has not yet been established, although coagulopathy arising from brain tissue injury and the release of tissue factor may represent the pathophysiology. The authors investigated dynamic whole-blood clot formation (ROTEM) in a recently developed porcine model of induced severe intracranial hypertension. ⋯ In a porcine model, induction of increased intracranial pressure causing severe intracranial hypertension was associated with a pronounced activation of the coagulation system. Taken together, the various results indicate that tissue factor probably represents the main trigger of hypercoagulopathy found in these pigs.
-
The use of fentanyl as a potent analgesic is contradicted by marked respiratory depression among a subpopulation of patients. The commonly used approach of reversing fentanyl-induced respiratory depression with mu-opiate receptor antagonists such as naloxone has the undesirable effect of blocking analgesia. Here, the authors report a clinically feasible pharmacological solution for countering fentanyl-induced respiratory depression via a mechanism that does not interfere with analgesia. Specifically, to determine if the ampakine CX717, which has been proven metabolically stable and safe for human use, can prevent and rescue from severe fentanyl-induced apnea. ⋯ CX717 is an agent that enhances the safety of using opiate drugs while preserving the analgesic effects. This advancement could significantly improve pain management in a variety of clinical settings.
-
Randomized Controlled Trial
Anesthetic-induced improvement of the inflammatory response to one-lung ventilation.
Although one-lung ventilation (OLV) has become an established procedure during thoracic surgery, sparse data exist about inflammatory alterations in the deflated, reventilated lung. The aim of this study was to prospectively investigate the effect of OLV on the pulmonary inflammatory response and to assess possible immunomodulatory effects of the anesthetics propofol and sevoflurane. ⋯ This prospective, randomized clinical study suggests an immunomodulatory role for the volatile anesthetic sevoflurane in patients undergoing OLV for thoracic surgery with significant reduction of inflammatory mediators and a significantly better clinical outcome (defined by postoperative adverse events) during sevoflurane anesthesia.
-
Randomized Controlled Trial
Rifampin greatly reduces the plasma concentrations of intravenous and oral oxycodone.
Oxycodone is a mu-opioid receptor agonist that is metabolized mainly in the liver by cytochrome P450 3A and 2D6 enzymes. Rifampin is a strong inducer of several drug-metabolizing enzymes. The authors studied the interaction of rifampin with oxycodone. Their hypothesis was that rifampin enhances the CYP3A-mediated metabolism of oxycodone and attenuates its pharmacologic effect. ⋯ Induction of cytochrome P450 3A by rifampin reduced the area under the oxycodone concentration-time curve of intravenous and oral oxycodone. The pharmacologic effects of oxycodone were modestly attenuated. To maintain adequate analgesia, dose adjustment of oxycodone may be necessary, when used concomitantly with rifampin.