Anesthesiology
-
Review
Aerosolized antibiotics for ventilator-associated pneumonia: lessons from experimental studies.
The aim of this review is to perform a critical analysis of experimental studies on aerosolized antibiotics and draw lessons for clinical use in patients with ventilator-associated pneumonia. Ultrasonic or vibrating plate nebulizers should be preferred to jet nebulizers. During the nebulization period, specific ventilator settings aimed at decreasing flow turbulence should be used, and discoordination with the ventilator should be avoided. ⋯ If these conditions are strictly respected, then high lung tissue deposition associated with rapid and efficient bacterial killing can be expected. For aerosolized aminoglycosides and cephalosporins, a decrease in systemic exposure leading to reduced toxicity is not proven by experimental studies. Aerosolized colistin, however, does not easily cross the alveolar-capillary membrane even in the presence of severe lung infection, and high doses can be delivered by nebulization without significant systemic exposure.
-
Comparative Study
Differences in microRNA changes of healthy rat liver between sevoflurane and propofol anesthesia.
In previous studies, the authors showed that anesthetics affect the expression ratios of many genes in rat liver. microRNAs (miRNA) negatively regulate more than 30% of genes in cells, and control cell proliferation, inflammation, and metabolism. The authors hypothesized that anesthetics influence miRNA expression in the liver, and performed miRNA screening tests using TaqMan low-density arrays. ⋯ The results showed that anesthetics cause many miRNA expression changes, and the miRNA expression pattern was particular for each anesthetic. Further studies are needed to determine the functional consequence of miRNA modulation by anesthetics.
-
In acute lung injury positive end-expiratory pressure (PEEP) and recruitment maneuver are proposed to optimize arterial oxygenation. The aim of the study was to evaluate the impact of such a strategy on lung histological inflammation and hyperinflation in pigs with acid aspiration-induced lung injury. ⋯ In a porcine model of acid aspiration-induced lung injury, PEEP titration aimed at optimizing arterial oxygenation, substantially increased lung inflammation. Recruitment maneuvers further improved arterial oxygenation without additional effects on inflammation and hyperinflation.