Anesthesiology
-
Comparative Study
Intracranial self-stimulation of the paraventricular nucleus of the hypothalamus: increased faciliation by morphine compared to cocaine.
Neuropathic pain attenuates opioid facilitation of rewarding electrical stimulation of limbic dopaminergic pathways originating from the ventral tegmental area. Whether neuropathic pain alters opioid effects of other brain-reward systems is unknown. ⋯ PVN ICSS is facilitated to a greater extent by morphine than cocaine, and the effects of each drug on this behavior are unaltered after spinal nerve ligation. These effects contrast those observed with direct stimulation of limbic dopamine pathways, suggesting that the PVN may have a greater role in the reinforcing effects of opioids than classic limbic regions, particularly in the presence of chronic pain.
-
The evaluation of pain intensity during the immediate postoperative period is a key factor for pain management. However, this evaluation may be difficult in some circumstances. The pupillary dilatation reflex (PDR) has been successfully used to assess the analgesic component of a balanced anesthetic regimen. We hypothesized that PDR could be a reliable index of pain intensity and could guide morphine administration in the immediate postoperative period. ⋯ In the immediate postoperative period, the PDR is significantly correlated with the VRS. The pupillometer could be a valuable tool to guide morphine administration in the immediate postoperative period.
-
High tidal volumes in patients with acute respiratory distress syndrome and acute lung injury lead to ventilator-induced lung injury and increased mortality. We evaluated the impact of tidal volumes on cardiac surgery outcomes. ⋯ Tidal volumes of more than 10 ml/kg are risk factors for organ failure and prolonged intensive care unit stay after cardiac surgery. Women and obese patients are particularly at risk of being ventilated with injurious tidal volumes.
-
The minimum alveolar concentration is determined in the spinal cord rather than in the brain. Xenon inhibits glutamatergic excitatory synaptic transmission in the dorsal horn neurons. However, its actions in the ventral horn neurons have not been investigated. ⋯ Xenon inhibits α-amino-3-hydroxy-5-methyl-4-isoxazole-4-propionic acid receptor-mediated glutamatergic excitatory transmission in the spinal lamina IX neurons via a postsynaptic mechanism. In contrast, there are no substantial effects on N-methyl-D-aspartate receptor-mediated or inhibitory synaptic transmission. The suppressive effects on excitatory synaptic transmission in the ventral horn neurons partly account for the mechanism behind xenon's ability to produce immobility in response to noxious stimuli and to determine the minimum alveolar concentration.