Anesthesiology
-
Randomized Controlled Trial
A practical tranexamic acid dosing scheme based on population pharmacokinetics in children undergoing cardiac surgery.
Pediatric cardiac surgery patients are at high risk for bleeding, and the antifibrinolytic drug tranexamic acid (TA) is often used to reduce blood loss. However, dosing schemes remain empirical as a consequence of the absence of pharmacokinetic study in this population. The authors' objectives were thus to investigate the population pharmacokinetics of TA in pediatric cardiac surgery patients during cardiopulmonary bypass (CPB). ⋯ The authors report for the first time the pharmacokinetics of TA in children undergoing cardiac surgery with CPB, and propose a dosing scheme for optimized TA administration in those children.
-
Data are lacking on the optimal scheduling of coronary artery bypass grafting (CABG) surgery after stroke. The authors investigated the preoperative predictors of adverse outcomes in patients undergoing CABG, with a focus on the importance of the time interval between prior stroke and CABG. ⋯ The authors found no evidence that more recent preoperative stroke predisposed patients undergoing CABG surgery to suffer postoperative stroke, death, or prolonged length of stay. The combination of prior stroke and myocardial infarction substantially increased perioperative risk.
-
Ketamine is a commonly used anesthetic, but the mechanistic basis for its clinically relevant actions remains to be determined. The authors previously showed that HCN1 channels are inhibited by ketamine and demonstrated that global HCN1 knockout mice are twofold less sensitive to hypnotic actions of ketamine. Although that work identified HCN1 channels as a viable molecular target for ketamine, it did not determine the relevant neural substrate. ⋯ These data indicate that forebrain principal cells represent a relevant neural substrate for HCN1-mediated hypnotic actions of ketamine. The authors suggest that ketamine inhibition of HCN1 shifts cortical neuron electroresponsive properties to contribute to ketamine-induced hypnosis.
-
Comparative Study
Comparison of equivolume, equiosmolar solutions of mannitol and hypertonic saline with or without furosemide on brain water content in normal rats.
Mannitol and hypertonic saline (HS) are used by clinicians to reduce brain water and intracranial pressure and have been evaluated in a variety of experimental and clinical protocols. Administering equivolume, equiosmolar solutions in healthy animals could help produce fundamental data on water translocation in uninjured tissue. Furthermore, the role of furosemide as an adjunct to osmotherapy remains unclear. ⋯ When compared to equivolume, equiosmolar administration of HS, mannitol reduced brain water content to a greater extent over the entire course of the 5-h experiment. When furosemide was added to HS, the brain-dehydrating effect could not be distinguished from that of mannitol.
-
Mesenchymal stromal cells (MSCs) have been demonstrated to attenuate acute lung injury when delivered by intravenous or intratracheal routes. The authors aimed to determine the efficacy of and mechanism of action of intratracheal MSC therapy and to compare their efficacy in enhancing lung repair after ventilation-induced lung injury with intravenous MSC therapy. ⋯ Intratracheal MSC therapy enhanced recovery after ventilation-induced lung injury via a paracrine mechanism, and was as effective as intravenous MSC therapy.