Anesthesiology
-
WHAT THIS ARTICLE TELLS US THAT IS NEW: BACKGROUND:: The pharmacokinetics of infused drugs have been modeled without regard for recirculatory or mixing kinetics. We used a unique ketamine dataset with simultaneous arterial and venous blood sampling, during and after separate S(+) and R(-) ketamine infusions, to develop a simplified recirculatory model of arterial and venous plasma drug concentrations. ⋯ Arterial drug concentrations measured during drug infusion have two kinetically distinct components: partially or lung-mixed drug and fully mixed-recirculated drug. Front-end kinetics suggest the partially mixed concentration is proportional to the ratio of infusion rate and total pharmacokinetic flow. This simplified modeling approach could lead to more generalizable models for target-controlled infusions and improved methods for analyzing pharmacokinetic-pharmacodynamic data.
-
WHAT THIS ARTICLE TELLS US THAT IS NEW: BACKGROUND:: Xenon is an elemental anesthetic with nine stable isotopes. Nuclear spin is a quantum property which may differ among isotopes. Xenon 131 (Xe) has nuclear spin of 3/2, xenon 129 (Xe) a nuclear spin of 1/2, and the other seven isotopes have no nuclear spin. This study was aimed to explore the effect of nuclear spin on xenon anesthetic potency. ⋯ Xenon isotopes with nuclear spin are less potent than those without, and polarizability cannot account for the difference. The lower anesthetic potency of Xe may be the result of it participating in conscious processing and therefore partially antagonizing its own anesthetic potency. Nuclear spin is a quantum property, and our results are consistent with theories that implicate quantum mechanisms in consciousness.
-
WHAT THIS ARTICLE TELLS US THAT IS NEW: BACKGROUND:: Pyroptosis, a type of proinflammatory programmed cell death, drives cytokine storm. Caspase-11-dependent macrophage pyroptosis contributes to mortality during sepsis. Sphingosine-1-phosphate receptor 2 (S1PR2) signaling can amplify interleukin-1β secretion in endotoxin-induced inflammation. Here, we hypothesized that S1PR2 signaling increases caspase-11-dependent macrophage pyroptosis and worsens Gram-negative sepsis outcome. ⋯ S1PR2 deficiency decreased macrophage pyroptosis and improved survival in E. coli sepsis. These beneficial effects were attributed to the decreased caspase-11 activation of S1PR2-deficient macrophages. S1PR2 and caspase-11 may be promising new targets for treatment of sepsis.