Anesthesiology
-
Mutations in the presynaptic protein syntaxin1A modulate general anesthetic effects in vitro and in vivo. Coexpression of a truncated syntaxin1A protein confers resistance to volatile and intravenous anesthetics, suggesting a target mechanism distinct from postsynaptic inhibitory receptor processes. Hypothesizing that recovery from anesthesia may involve a presynaptic component, the authors tested whether syntaxin1A mutations facilitated recovery from isoflurane anesthesia in Drosophila melanogaster. ⋯ The same neomorphic syntaxin1A mutation that confers isoflurane resistance in cell culture and nematodes also produces isoflurane resistance in Drosophila. Resistance in Drosophila is, however, most evident at the level of recovery from anesthesia, suggesting that the syntaxin1A target affects anesthesia maintenance and recovery processes rather than induction. The absence of truncated syntaxin1A from the presynaptic complex suggests that the resistance-promoting effect of this molecule occurs before core complex formation.
-
Observational Study
Postoperative Delirium and Postoperative Cognitive Dysfunction: Overlap and Divergence.
Postoperative delirium and postoperative cognitive dysfunction share risk factors and may co-occur, but their relationship is not well established. The primary goals of this study were to describe the prevalence of postoperative cognitive dysfunction and to investigate its association with in-hospital delirium. The authors hypothesized that delirium would be a significant risk factor for postoperative cognitive dysfunction during follow-up. ⋯ Delirium significantly increased the risk of postoperative cognitive dysfunction in the first postoperative month; this relationship did not hold in longer-term follow-up. At each evaluation, postoperative cognitive dysfunction was more common among patients without delirium. Postoperative delirium and postoperative cognitive dysfunction may be distinct manifestations of perioperative neurocognitive deficits.
-
Higher driving pressure during controlled mechanical ventilation is known to be associated with increased mortality in patients with acute respiratory distress syndrome.Whereas patients with acute respiratory distress syndrome are initially managed with controlled mechanical ventilation, as they improve, they are transitioned to assisted ventilation. Whether higher driving pressure assessed during pressure support (assisted) ventilation can be reliably assessed and whether higher driving pressure is associated with worse outcomes in patients with acute respiratory distress syndrome has not been well studied. ⋯ In patients with ARDS, plateau pressure, driving pressure, and respiratory system compliance can be measured during assisted ventilation, and both higher driving pressure and lower compliance are associated with increased mortality.