Anesthesiology
-
Randomized Controlled Trial
Botulinum Toxin Type A for Lumbar Sympathetic Ganglion Block in Complex Regional Pain Syndrome: A Randomized Trial.
The present study was designed to test the hypothesis that botulinum toxin would prolong the duration of a lumbar sympathetic block measured through a sustained increase in skin temperature. The authors performed a randomized, double-blind, controlled trial to investigate the clinical outcome of botulinum toxin type A for lumbar sympathetic ganglion block in patients with complex regional pain syndrome. ⋯ In patients with complex regional pain syndrome, lumbar sympathetic ganglion block using botulinum toxin type A increased the temperature of the affected foot for 3 months and also reduced the pain.
-
Over the past five decades, quantitative neuromuscular monitoring devices have been used to examine the incidence of postoperative residual neuromuscular block in international clinical practices, and to determine their role in reducing the risk of residual neuromuscular block and associated adverse clinical outcomes. Several clinical trials and a recent meta-analysis have documented that the intraoperative application of quantitative monitoring significantly reduces the risk of residual neuromuscular blockade in the operating room and postanesthesia care unit. ⋯ Several international anesthesia societies have recommended that quantitative monitoring be performed whenever a neuromuscular blocking agent is administered. Therefore, a comprehensive review of the literature was performed to determine the potential benefits of quantitative monitoring in the perioperative setting.
-
Mechanical ventilation for pneumonia may contribute to lung injury due to factors that include mitochondrial dysfunction, and mesenchymal stem cells may attenuate injury. This study hypothesized that mechanical ventilation induces immune and mitochondrial dysfunction, with or without pneumococcal pneumonia, that could be mitigated by mesenchymal stem cells alone or combined with antibiotics. ⋯ In this preclinical study, mesenchymal stem cells improved the outcome of rabbits with pneumonia and high-pressure mechanical ventilation by correcting immune and mitochondrial dysfunction and when combined with the antibiotic ceftaroline was synergistic in mitigating lung inflammation.