Neuropsychologia
-
Comparative Study
Action verbs and the primary motor cortex: a comparative TMS study of silent reading, frequency judgments, and motor imagery.
Single pulse transcranial magnetic stimulation (TMS) was applied to the hand area of the left primary motor cortex or, as a control, to the vertex (STIMULATION: TMS(M1) vs. TMS(vertex)) while right-handed volunteers silently read verbs related to hand actions. We examined three different tasks and time points for stimulation within the same experiment: subjects indicated with their left foot when they (i) had finished reading, (ii) had judged whether the corresponding movement involved a hand rotation after simulating the hand movement, and (iii) had judged whether they would frequently encounter the action verb in a newspaper (TASK: silent reading, motor imagery, and frequency judgment). ⋯ No differential effect of the time point of TMS(M1) was observed. The differential effect of TMS(M1) when subjects performed a motor imagery task (relative to performing silent reading or frequency judgments with the same set of verbs) suggests that the primary motor cortex is critically involved in processing action verbs only when subjects are simulating the corresponding movement. This task-dependent effect of hand motor cortex TMS on the processing of hand-related action verbs is discussed with respect to the notion of embodied cognition and the associationist theory.
-
Comparative Study
Impaired recognition of facial emotions from low-spatial frequencies in Asperger syndrome.
The theory of 'weak central coherence' [Happe, F., & Frith, U. (2006). The weak coherence account: Detail-focused cognitive style in autism spectrum disorders. Journal of Autism and Developmental Disorders, 36(1), 5-25] implies that persons with autism spectrum disorders (ASDs) have a perceptual bias for local but not for global stimulus features. ⋯ The two groups recognized emotions similarly from non-filtered faces and from dynamic vs. static facial expressions. In contrast, the participants with AS were less accurate than controls in recognizing facial emotions from very low-spatial frequencies. The results suggest intact recognition of basic facial emotions and dynamic facial information, but impaired visual processing of global features in ASDs.
-
Comparative Study
Perceptual load affects spatial and nonspatial visual selection processes: an event-related brain potential study.
One major question toward understanding selective attention regards the efficiency of selection. One theory contends that this efficiency in vision is determined primarily by the perceptual load (PL) imposed by the relevant stimuli; if this load is high enough to fill attentional capacity, irrelevant stimuli will be excluded before they interfere with task performance, but if this load is lower the spare capacity will be directed automatically to the irrelevant information, which will then interfere with task performance. ⋯ PL was manipulated by varying the similarity between the target/deviant and standard stimulus, and increases in PL were found to increase the magnitude of the relevant-irrelevant difference waveforms in both tasks at predicted temporal windows. These findings suggest that PL affects attentional selection that is tonically maintained across many experimental trials, and does so not only when selection is spatially based but also when it is based upon nonspatial cues.
-
The hippocampus is the brain structure of highest and earliest structural alteration in Alzheimer's disease (AD). New developments in neuroimaging methods recently made it possible to assess the respective involvement of the different hippocampal subfields by mapping atrophy on a 3D hippocampal surface view. In this longitudinal study on patients with mild cognitive impairment (MCI), we used such an approach to map the profile of hippocampal atrophy and its progression over an 18-month follow-up period in rapid converters to AD and "non-converters" compared to age-matched controls. ⋯ Moreover, the CA1 subfield also showed highest atrophy rates during follow-up, in both rapid converters and "non-converters" although increased effects were observed in the former group. This study emphasizes the differences between normal aging and AD processes leading to hippocampal atrophy, pointing to a specific AD-related CA1 involvement while subiculum atrophy would represent a normal aging process. Our findings also suggest that the degree of hippocampal atrophy, more than its spatial localization, predicts rapid conversion to AD in patients with MCI.