Neuropsychologia
-
To estimate the location of a tactile stimulus, the brain seems to integrate different types of spatial information such as skin-based, anatomical coordinates and external, spatiotopic coordinates. The aim of the present study was to test whether the use of these coordinates is fixed, or whether they are weighted according to the task context. Participants made judgments about two tactile stimuli with different vibration characteristics, one applied to each hand. ⋯ Like the anatomically coded spatial secondary task, the temporal secondary task improved crossed hand performance of the primary task. The differential influence of the varying secondary tasks implies that integration weights assigned to the anatomical and external reference frames are not fixed. Rather, they are flexibly adjusted to the context, presumably through top-down modulation.
-
Interactions between ourselves and the external world are mediated by a multisensory representation of the space surrounding the body, i.e. the peripersonal space (PPS). In particular, a special interplay is observed among tactile stimuli delivered on a body part, e.g. the hand, and visual or auditory external inputs presented close, but not far, from the same body part, e.g. within hand PPS. This coding of multisensory stimuli as a function of their distance from the hand has a role in upper limb actions. ⋯ This effect captures the spatial boundaries within which PPS representation modulates hand cortico-motor excitability. This spatially-dependent modulation of corticospinal activity was not further affected by the sound direction. Such findings support a strict link between the multisensory representation of the space around the body and the motor representation of potential approaching or defensive acts within that space.
-
Randomized Controlled Trial
Tyrosine promotes cognitive flexibility: evidence from proactive vs. reactive control during task switching performance.
Tyrosine (TYR), an amino acid found in various foods, has been shown to increase dopamine (DA) levels in the brain. Recent studies have provided evidence that TYR supplementation can improve facets of cognitive control in situations with high cognitive demands. Here we investigated whether TYR promotes cognitive flexibility, a cognitive-control function that is assumed to be modulated by DA. ⋯ In a double-blind, randomized, placebo-controlled design, 22 healthy adults performed in a task-switching paradigm. Compared to a neutral placebo, TYR promoted cognitive flexibility (i.e. reduced switching costs). This finding supports the idea that TYR can facilitate cognitive flexibility by repleting cognitive resources.
-
Delayed recall at the primacy position (first few items on a list) has been shown to predict cognitive decline in cognitively intact elderly participants, with poorer delayed primacy performance associated with more pronounced generalized cognitive decline during follow-up. We have previously suggested that this association is due to delayed primacy performance indexing memory consolidation, which in turn is thought to depend upon hippocampal function. Here, we test the hypothesis that hippocampal size is associated with delayed primacy performance in cognitively intact elderly individuals. ⋯ We conducted regression analyses of hippocampus volumes on serial position performance; other predictors included age, family history of Alzheimer's disease (AD), APOE ε4 status, education, and total intracranial volume. Our results collectively suggest that there is a preferential association between hippocampal volume and delayed primacy performance. These findings are consistent with the hypothesis that delayed primacy consolidation is associated with hippocampal size, and shed light on the relationship between delayed primacy performance and generalized cognitive decline in cognitively intact individuals, suggesting that delayed primacy consolidation may serve as a sensitive marker of hippocampal health in these individuals.
-
Theory of Mind (ToM) forms an integral component of socially skilled behavior, and is critical for attaining developmentally appropriate goals. The protracted development of ToM is mediated by increasing connectivity between regions of the anatomically distributed 'mentalizing network', and may be vulnerable to disruption from pediatric traumatic brain injury (TBI). The present study aimed to evaluate the post-acute effects of TBI on first-order ToM, and examine relations between ToM and both local and global indices of macrostructural damage detected using susceptibility-weighted imaging (SWI). 104 children and adolescents with TBI and 43 age-matched typically developing (TD) controls underwent magnetic resonance imaging including a susceptibility-weighted imaging (SWI) sequence 2-8 weeks post-injury and were assessed on cognitive ToM tasks at 6-months after injury. ⋯ Moreover, impairments in ToM were related to diffuse neuropathology, and parietal lobe lesions. Our findings support the vulnerability of the immature social brain network to disruption from TBI, and suggest that global macrostructural damage commonly associated with traumatic axonal injury (TAI) may contribute to structural disconnection of anatomically distributed regions that underlie ToM. This study suggests that SWI may be a valuable imaging biomarker to predict outcome and recovery of social cognition after pediatric TBI.