Anesthesia and analgesia
-
Anesthesia and analgesia · Feb 1998
Pharmacokinetics of the enantiomers of bupivacaine and mepivacaine after epidural administration of the racemates.
We investigated the pharmacokinetics of the enantiomers of bupivacaine and mepivacaine after epidural injection of the racemate of each drug into six surgical patients. After epidural administration of either bupivacaine/HCl (115 mg) or mepivacaine/HCl (460 mg), blood samples were collected for 24 h. Unbound fractions were determined by using ultrafiltration for bupivacaine and equilibrium dialysis for mepivacaine. Concentrations in plasma, ultrafiltrate, and dialysate were determined by using stereoselective high-performance liquid chromatography. Peak plasma concentrations of R(+)-bupivacaine (389 +/- 93 ng/mL) and R(-)-mepivacaine (1350 +/- 430 ng/mL) were smaller than those of S(-)-bupivacaine (449 +/- 109 ng/mL, P < 0.0001) and S(+)-mepivacaine (1740 +/- 490 ng/mL, P < 0.002), respectively. However, the unbound peak concentrations of R(+)-bupivacaine (20 +/- 11 ng/mL) were larger than those of S(-)-bupivacaine (15 +/- 9 ng/mL, P < 0.005); unbound peak concentrations of R(-)-mepivacaine (485 +/- 158 ng/mL) and S(+)-mepivacaine (460 +/- 139 ng/mL) did not differ. These observations reflect differences in the systemic disposition (distribution and elimination) of the enantiomers, because the systemic absorption was not enantioselective with either drug. This study supports the opinion that the use of single enantiomers, rather than racemates, is preferable, particularly for bupivacaine. ⋯ Measurements of the plasma concentrations of the enantiomers of bupivacaine and mepivacaine after epidural administration of the racemates demonstrated that the systemic disposition, but not the systemic absorption, of these drugs is enantioselective and supports the opinion that the use of single enantiomers, rather than racemates, is preferable.
-
Anesthesia and analgesia · Feb 1998
The effect of anesthetic duration on kinetic and recovery characteristics of desflurane versus sevoflurane, and on the kinetic characteristics of compound A, in volunteers.
This study documents the differences in kinetics of 2 h (n = 7) and 4 h (n = 9) of 1.25 minimum alveolar anesthetic concentration (MAC) of desflurane (9.0%) versus (on a separate occasion) sevoflurane (3.0%), both administered in a fresh gas inflow of 2 L/min. These data are extensions of our previous 8-h (n = 7) studies of these anesthetics. By 10 min of anesthetic administration, average inspired (F(I)) and end-tidal concentration (F(A)) (F(I)/F(A); the inverse of the more commonly used F(A)/F(I)) decreased to less than 1.15 for both anesthetics, with the difference from 1.0 nearly twice as great for sevoflurane as for desflurane. During all sevoflurane administrations, F(A)/F(I) for Compound A [CH2F-O-C(=CF2) (CF3); a vinyl ether resulting from the degradation of sevoflurane by Baralyme] equaled approximately 0.8, and the average inspired concentration equaled approximately 40 ppm. Compound A is of interest because at approximately 150 ppm-h, it can induce biochemical and histological evidence of glomerular and tubular injury in rats and humans. During elimination, F(A)/F(A0) for Compound A (F(A0) is the last end-tidal concentration during anesthetic administration) decreased abruptly to 0 after 2 h and 4 h of anesthesia and to approximately 0.1 (F(A) approximately 3 ppm) after 8 h of anesthesia. In contrast, F(A)/F(A0) for desflurane and sevoflurane decreased in a conventional, multiexponential manner, the decrease being increasingly delayed with increasing duration of anesthetic administration. F(A)/F(A0) for sevoflurane exceeded that for desflurane for any given duration of anesthesia, and objective and subjective measures indicated a faster recovery with desflurane. Times (mean +/- SD) to initial response to command (2 h 10.9 +/- 1.2 vs 17.8 +/- 5.1 min, 4 h 11.3 +/- 2.1 vs 20.8 +/- 4.8 min, 8 h 14 +/- 4 vs 28 +/- 8 min) and orientation (2 h 12.7 +/- 1.6 vs 21.2 +/- 4.6 min, 4 h 14.8 +/- 3.1 vs 25.3 +/- 6.5 min, 8 h 19 +/- 4 vs 33 +/- 9 min) were shorter with desflurane. Recovery as defined by the digit symbol substitution test, P-deletion test, and Trieger test results was more rapid with desflurane. The incidence of vomiting was greater with sevoflurane after 8 h of anesthesia but not after shorter durations. We conclude that for each anesthetic duration, F(I) more closely approximates F(A) with desflurane during anesthetic administration, F(A)/F(A0) decreases more rapidly after anesthesia with desflurane, and objective measures indicate more rapid recovery with desflurane. Finally, it seems that after 2-h and 4-h administrations, all Compound A taken up is bound within the body. ⋯ Regardless of the duration of anesthesia, elimination is faster and recovery is quicker for the inhaled anesthetic desflurane than for the inhaled anesthetic sevoflurane. The toxic degradation product of sevoflurane, Compound A, seems to bind irreversibly to proteins in the body.
-
Anesthesia and analgesia · Feb 1998
Propofol and thiopental in a 1:1 volume mixture is chemically stable.
Propofol and thiopental have been used clinically in combination for induction of anesthesia. Studies suggest that this mixture has synergistic activity, recovery characteristics similar to propofol alone, and bactericidal effects on multiple organisms. It may therefore be both clinically useful and cost-effective. In this study, we examined the chemical stability of this mixture. We used high-performance liquid chromatography to quantify the concentration of both propofol and thiopental in a given sample. This technique allows the detection of loss in total drug mass and of the appearance of breakdown products resulting from drug interaction. Ten samples of a 1:1 mixture by volume were prepared and assayed at Time 0 and Days 1, 3, and 7. Half the samples were incubated at 23 degrees C and the rest were stored at 4 degrees C. Other mixtures were assayed before and after filtration at Time 0 and Days 1 and 7 after storage at 23 degrees C. The assay was able to measure accurately the quantity of drug present in the samples. There was no significant decrease in the quantities of either propofol or thiopental in the mixture over the 7-day period. We conclude that the 1:1 volume mixture of propofol and thiopental is chemically stable for 1 wk at room temperature. ⋯ A mixture of propofol and thiopental has been used to induce anesthesia. We investigated the chemical stability of this mixture using high-performance liquid chromatography and found it to be stable for at least 24 h.
-
Anesthesia and analgesia · Feb 1998
Extension of sensory blockade after thoracic epidural administration of a test dose of lidocaine at three different levels.
To evaluate the relationship between the level of thoracic epidural injection and the extension of sensory blockade, we inserted radiopaque epidural catheters in 87 patients at the high (C7-T2, n = 28), mid (T3-5, n = 29) or low (T7-9, n = 30) thoracic levels. Fifteen minutes after the epidural administration of 60 mg of lidocaine, the mean (+/- SD) sensory block extension varied from 5.4 +/- 3.1 to 7.7 +/- 1.8 segments. The level of epidural puncture was a statistically significant factor in determining the cranial and caudal borders of sensory blockade (P = 0.0001, analysis of variance), but in determining for the total number of segments blocked. The number of blocked dermatomes located cranially of the puncture level increased significantly with descending injection site (P = 0.0001). We acquired chest radiographs in 61 patients to determine epidural catheter tip position. Direction of the epidural catheter tip was not a significant factor in determining the extension or borders of sensory blockade. We conclude that the extension of sensory blockade in thoracic epidural anesthesia is not influenced by the level of epidural puncture or catheter tip direction. There is, however, a more cranial spread of sensory blockade in the low thoracic region compared with the high thoracic region. ⋯ After evaluating the extension and pattern of sensory blockade in high, mid, and low thoracic epidural analgesia, the authors suggest that it is safe to use similar dosage regimens in all three regions, and that in high thoracic epidural analgesia, it is important to insert the epidural catheter at the level of the intended cranial border of blockade.
-
Anesthesia and analgesia · Feb 1998
The effects of the alpha2-adrenergic agonist, dexmedetomidine, in the spinal nerve ligation model of neuropathic pain in rats.
Peripheral nerve injury may lead to neuropathic pain. Alpha2-adrenergic agonists acting in the descending inhibitory tracts of the spinal cord are effective in acute nociceptive, inflammatory, and, possibly, neuropathic pain. We studied the prevention and treatment of neuropathy with the selective alpha2-adrenergic agonist dexmedetomidine in male Sprague-Dawley rats with unilateral peripheral mononeuropathy resulting from tight ligation of the L5 and L6 spinal nerves. Rats with ligation injury developed mechanical and cold allodynia, but not heat hyperalgesia. Dexmedetomidine (120 microg/kg subcutaneously [S.C.] 30 min before the injury) did not attenuate mechanical or cold allodynia. Dexmedetomidine infusions (60 microg/d for 7 days after the injury, or 30 microg/d for 7 days started 14 days after the injury) did not attenuate mechanical or cold allodynia in the ipsilateral paw, but they increased mechanical allodynia during the latter treatment in the paw contralateral to the injury. Atipamezole (1 mg/kg S.C.) induced mechanical and cold allodynia in rats that had not developed allodynia in 14 days after the injury. In conclusion, although alpha2-adrenergic mechanisms are recognized as important in the development of neuropathic pain-like symptoms in this animal model, we found no favorable effect from systemic treatment with dexmedetomidine at tolerable doses. ⋯ We studied the prevention and treatment of nerve injury-induced pain with the alpha2-adrenergic agonist dexmedetomidine in an animal model. At tolerable doses, systemic dexmedetomidine neither prevented nor attenuated neuropathic pain behavior.