Anesthesia and analgesia
-
Anesthesia and analgesia · Mar 1999
Randomized Controlled Trial Comparative Study Clinical TrialPulmonary function changes after interscalene brachial plexus anesthesia with 0.5% and 0.75% ropivacaine: a double-blinded comparison with 2% mepivacaine.
The purpose of this investigation was to compare, in a prospective, double-blinded fashion, 0.5% and 0.75% ropivacaine with 2% mepivacaine to determine their effects on respiratory function during interscalene brachial plexus (IBP) anesthesia. With ethical committee approval and written, informed consent, 30 healthy patients presenting for elective shoulder capsuloplastic or acromioplastic procedures were randomized to receive IBP anesthesia by 20 mL of either 0.5% ropivacaine (n = 10), 0.75% ropivacaine (n = 10), or 2% mepivacaine (n = 10). Block onset time, pulmonary function variables, ipsilateral hemidiaphragmatic motion (ultrasonographic evaluation), and first requirement of postoperative analgesic were evaluated. Surgical anesthesia (loss of pinprick sensation from C4 to C7 and motor block of the shoulder joint) was achieved later with 0.5% ropivacaine than with either 0.75% ropivacaine or 2% mepivacaine (P < 0.05), whereas the first pain medication was requested later with both ropivacaine concentrations than with mepivacaine (P < 0.0005). No differences in quality of the block or patient acceptance were observed in the three groups. All 30 patients had ipsilateral hemidiaphragmatic paresis and large mean decreases in forced vital capacity (ropivacaine 0.5%: 40% +/- 17%, ropivacaine 0.75%: 41% +/- 22%, mepivacaine 2%: 39% +/- 21%) and forced expiratory volume at 1 s (ropivacaine 0.5%: 30% +/- 19%, ropivacaine 0.75%: 38% +/- 26%, mepivacaine 2%: 40% +/- 10%). We conclude that, when performing IBP anesthesia, 0.5% ropivacaine does not decrease the incidence of ipsilateral paresis of the hemidiaphragm compared with 0.75% ropivacaine and 2% mepivacaine. ⋯ During the first 30 min after placing interscalene brachial plexus anesthesia, 0.5% ropivacaine does not provide clinically relevant advantages in terms of pulmonary function changes compared with either 0.75% ropivacaine or 2% mepivacaine. However, 0.75% ropivacaine allows a short onset, similar to that of mepivacaine, with long postoperative analgesia.
-
Anesthesia and analgesia · Mar 1999
Comparative StudyThe incidence of fetal heart rate changes after intrathecal fentanyl labor analgesia.
We performed a retrospective review to compare the incidence of new fetal heart rate abnormalities after institution of either intrathecal fentanyl or conventional epidural labor analgesia. In chronological order, the first 100 parturients in active labor who had received epidural analgesia and had recorded fetal heart rate (FHR) traces for 30 min before and after injection were identified, as were the first 100 parturients who had received intrathecal fentanyl analgesia. A perinatologist blinded to the anesthetic technique evaluated each recording and identified any changes in the FHR between the before and after tracings. The incidence of new "negative" (implying worsened fetal status) changes was 6% in the epidural group and 12% in the intrathecal group (P > 0.05, not significant). There were no differences in incidence or degree of blood pressure change, need for cesarean delivery, neonatal outcome, parity, or oxytocin use. No parturient required urgent or emergent cesarean delivery, and all changes resolved within the 30-min observation period. A much larger study would be required to determine whether this six percentage point difference represents a true difference between groups, and its clinical significance. ⋯ We compared the incidence of fetal heart rate changes after two techniques of labor analgesia. Both techniques were associated with a low (6%-12%) incidence of changes, but a much larger series would be required to determine whether this represents a true difference. No difference in neonatal outcome was found.
-
Anesthesia and analgesia · Mar 1999
Comparative StudyMeasuring brain tissue oxygenation compared with jugular venous oxygen saturation for monitoring cerebral oxygenation after traumatic brain injury.
Jugular bulb oximetry is the most widely used method of monitoring cerebral oxygenation. More recently, measurement of brain tissue oxygenation has been reported in head-injured patients. We compared the changes in brain tissue oxygen partial pressure (PbO2) with changes in jugular venous oxygen saturation (SjVO2) in response to hyperventilation in areas of brain with and without focal pathology. Thirteen patients with severe head injuries were studied. A multiparameter sensor was inserted into areas of brain with focal pathology in five patients and outside areas of focal pathology in eight patients. A fiberoptic catheter was inserted into the right jugular bulb. Patients were hyperventilated in a stepwise manner from a PaCO2 of approximately 35 mm Hg to a PaCO2 of 22 mm Hg. There was no significant change in cerebral perfusion pressure or arterial partial pressure of oxygen with hyperventilation. In areas without focal pathology, there was a good correlation between changes in SjVO2 and PbO2 (deltaSjVO2 and deltaPbO2; r2 = 0.69, P < 0.0001). In areas with focal pathology, there was no correlation between deltaSjVO, and APbO2 (r2 =0.07, P = 0.23). In this study, we demonstrated that measurement of local tissue oxygenation can highlight focal differences in regional cerebral oxygenation that are disguised when measuring SjVO2. Thus, monitoring of PbO2 is a useful addition to multimodal monitoring of patients with traumatic head injury. ⋯ Brain oxygenation is currently monitored by using jugular bulb oximetry, which attracts a number of potential artifacts and may not reflect regional changes in oxygenation. We compared this method with measurement of brain tissue oxygenation using a multiparameter sensor inserted into brain tissue. The brain tissue monitor seemed to reflect regional brain oxygenation better than jugular bulb oximetry.
-
Anesthesia and analgesia · Mar 1999
Clinical TrialThe nature of spontaneous recovery from mivacurium-induced neuromuscular block.
The hypothesis of this study was that, in a given patient, recovery from a tracheal intubating dose of mivacurium would indicate the time course of spontaneous recovery after discontinuation of an infusion of mivacurium. Thirty-eight male patients consented to participate in the study. After induction of anesthesia and endotracheal intubation, the ulnar nerve was stimulated with train-of-four (TOF) stimuli at 12-s intervals. Patients received 0.3 mg/kg mivacurium in two evenly divided doses of 0.15 mg/kg each, separated by 30 s. Complete ablation of TOF responses occurred in most patients. Once the first twitch in the TOF (T ) had recovered to 25% of its baseline height, a mivacurium infusion was begun to maintain 95% suppression of T1. As surgery was nearing completion, the infusion was discontinued, and neuromuscular function was allowed to recover spontaneously. Data were analyzed for recovery intervals after the administration of the initial doses of mivacurium and after discontinuation of the infusion. Analysis of variance was used to determine the strength of correlation between the time from administration of the initial 0.3 mg/kg dose to 5% recovery of T1 and the times to recovery of TOF ratios of 70% and 90%. The 25%-75% recovery interval after discontinuation of the infusion ranged from 2.8 to 11.3 min. The time interval after administration of mivacurium 0.3 mg/kg to 5% recovery of T1 correlated with both the time to recovery of a TOF ratio of 70% and 90%. Recovery to a TOF of 90% after discontinuation of the infusion required approximately the same amount of time as recovery to 5% T1 after the administration of 0.3 mg/kg mivacurium. Each patient's recovery of neuromuscular function after discontinuation of a mivacurium infusion was related to his recovery after the administration of 0.3 mg/kg mivacurium. Therefore, the need for pharmacologic antagonism of block can be anticipated well before the end of an anesthetic. ⋯ Mivacurium (0.3 mg/kg) was administered to 38 patients. As they began to recover muscle strength, a mivacurium infusion was begun and later discontinued as surgery was nearing completion. Each patient's early recovery (administration to 5% recovery of T1) after the initial dose of mivacurium correlated well with more complete recovery of muscle strength after discontinuation of an infusion. This relationship enables early prediction of recovery speed after a mivacurium infusion.
-
Anesthesia and analgesia · Mar 1999
The anesthetic and physiologic effects of an intravenous administration of a halothane lipid emulsion (5% vol/vol)
The i.v. administration of < or = 9 mL of nonvaporized liquid halothane causes significant pulmonary damage, cardiovascular decompensation, and death. To determine whether liquid halothane mixed in a lipid emulsion would alter these toxic effects, six swine were evaluated in a randomized cross-over study. The pulmonary, analgesic, hemodynamic, and histopathologic effects of liquid halothane (25 mL) mixed with a liquid carrier (475 mL, Liposyn III 20%) and administered by constant infusion were compared with halothane administered by a calibrated vaporizer. Three swine received the halothane lipid emulsion (HLE), followed by inhaled halothane. Three additional swine received inhaled halothane, followed by the HLE. There were no changes in pulmonary compliance or arterial blood gases during or after the administration of equivalent volumes of halothane (13.75 mL) either by infusion of HLE or by inhalation of halothane. The end-tidal halothane concentration for the minimum alveolar anesthetic concentration was 0.79% +/- 0.08% during HLE administration and 1.13% +/- 0.12% for inhaled halothane (P < 0.001). Hemodynamic variables and blood halothane levels by gas chromatography were measured at end-tidal concentrations of 0.6%, 1.2%, and 1.8%. Blood halothane levels (mg/mL) were significantly higher (P < 0.05) after the administration of HLE at end-tidal halothane concentrations of 1.2% (0.49 +/- 0.19 vs 0.82 +/- 0.18) and 1.8% (0.79 +/- 0.17 vs 1.29 +/- 0.34). When compared at equivalent blood levels, HLE caused fewer changes in the left ventricular end-diastolic pressure, mean arterial pressure, and dP/dt than inhaled halothane. There was no evidence of pulmonary histopathologic damage 4-8 h after the infusion of 500-700 mL of HLE. This novel method of delivery of a volatile anesthetic seems to lack the toxicity of direct i.v. administration of liquid halothane. It may be a useful alternative to traditional administration via a vaporizer. ⋯ Halothane causes pulmonary dysfunction and death when given i.v. in liquid form. Six swine received a halothane lipid emulsion i.v. to evaluate the anesthetic and physiologic effects. No pulmonary toxicity or deaths were associated with the halothane lipid emulsion. The anesthetic profile was similar to delivery of halothane via a vaporizer.