Anesthesia and analgesia
-
Anesthesia and analgesia · Jan 2000
Sevoflurane and isoflurane do not enhance the pre- and postischemic eicosanoid production in guinea pig hearts.
Eicosanoids and volatile anesthetics can influence cardiac reperfusion injury. Accordingly, we analyzed the effects of sevoflurane and isoflurane applied in clinically relevant concentrations on the myocardial production of prostacyclin and thromboxane A2 (TxA2) and on heart function. Isolated guinea pig hearts, perfused with crystalloid buffer, performed pressure-volume work. Between two working phases, hearts were subjected to 15 min of global ischemia followed by reperfusion. The hearts received no anesthetic, 1 minimum alveolar anesthetic concentration (MAC) isoflurane (1.2 vol%), or 0.5 and 1 MAC sevoflurane (1 vol% and 2 vol%), either only preischemically or pre- and postischemically. In additional groups, cyclooxygenase function was examined by an infusion of 1 microM arachidonic acid (AA) in the absence and presence of sevoflurane. The variables measured included the myocardial production of prostacyclin, TxA2 and lactate, consumption of pyruvate, coronary perfusion pressure, and the tissue level of isoprostane 8-iso-PGF2alpha. External heart work, determined pre- and postischemically, served to assess recovery of heart function. Volatile anesthetics had no impact on postischemic recovery of myocardial function (50%-60% recovery), perfusion pressure, lactate production, or isoprostane content. Release of prostacyclin and TxA2 was increased in the early reperfusion phase 5-8- and 2-4-fold, respectively, indicating enhanced AA liberation. Isoflurane and sevoflurane did not augment the eicosanoid release. Only 2 vol% sevoflurane applied during reperfusion prevented the increased eicosanoid formation in this phase. Infusion of AA increased prostacyclin production approximately 200-fold under all conditions, decreased pyruvate consumption irreversibly, and markedly attenuated postischemic heart work (25% recovery). None of these effects were mitigated by 2 vol% sevoflurane. In conclusion, only sevoflurane at 2 vol% attenuated the increased liberation of AA during reperfusion. Decreased eicosanoid formation had no effect on myocardial recovery in our experimental setting while excess AA was deleterious. Because eicosanoids influence intravascular platelet and leukocyte adhesion and activation, sevoflurane may have effects in reperfused tissues beyond those of isoflurane. ⋯ In an isolated guinea pig heart model, myocardial eicosanoid release was not increased by isoflurane or sevoflurane, either before or after ischemia. Sevoflurane (2 vol%) but not isoflurane attenuated the increased release of eicosanoids during reperfusion.
-
Anesthesia and analgesia · Jan 2000
Randomized Controlled Trial Clinical TrialThe effect of remifentanil on the bispectral index change and hemodynamic responses after orotracheal intubation.
In order to examine whether changes in the bispectral index (BIS) may be an adequate monitor for the analgesic component of anesthesia, we evaluated the effect of remifentanil on the BIS change and hemodynamic responses to laryngoscopy and tracheal intubation. Fifty ASA physical status I patients were randomly assigned, in a double-blinded fashion, to one of five groups (n = 10/group) according to the remifentanil target effect compartment site concentration (0, 2, 4, 8, or 16 ng/mL). The target-controlled infusion (TCI) of remifentanil was initiated 3 min after the TCI of propofol that was maintained at the effect-site concentration of 4 microg/mL throughout the study. After the loss of consciousness and before the administration of vecuronium 0.1 mg/kg, a tourniquet was applied to one arm and inflated above the systolic blood pressure in order to detect any gross movement within the first minute after tracheal intubation, which was performed 3 min after remifentanil TCI began. A BIS value was generated every 10 s. Arterial blood pressure and heart rate (HR) were measured every minute, noninvasively. Measures of mean arterial pressure (MAP), HR, and BIS were obtained before the induction, before the start of remifentanil TCI, before laryngoscopy, and 5 min after intubation. The relationships between remifentanil effect-site concentrations and BIS change or hemodynamic responses (changes in MAP and HR) to intubation were determined by logarithmic regression. BIS values were not affected by remifentanil before laryngoscopy. During this period, MAP and HR decreased significantly (P < 0.01) in the remifentanil 8 and 16 ng/mL groups. Changes in BIS, MAP, and HR were negatively correlated with remifentanil effect-site concentration (P < 0.0001). The number of movers in the remifentanil 0-, 2-, 4-, 8-, and 16-ng/mL groups was, respectively, 10, 9, 7, 1, and 0. Hypotensive episodes (MAP < 60 mm Hg) were noted in 1, 2, and 5 patients in the remifentanil 4-, 8-, and 16-ng/mL groups, respectively. We conclude that the addition of remifentanil to propofol affects BIS only when a painful stimulus is applied. Moreover, remifentanil attenuated or abolished increases in BIS and MAP after tracheal intubation in a comparable dose-dependent fashion. ⋯ Bispectral index change is as sensitive as hemodynamic responses after a painful stimulus for detecting deficits in the analgesic component of anesthesia. It may, therefore, be a useful monitor of the depth of anesthesia in patients who are incapable of HR and MAP responses to noxious stimuli because of medications or cardiovascular disease.