Anesthesia and analgesia
-
Anesthesia and analgesia · Jan 2000
The anticonvulsant effects of volatile anesthetics on lidocaine-induced seizures in cats.
Large concentrations of sevoflurane and isoflurane, but not halothane, induce spikes in the electroencephalogram. To elucidate whether these proconvulsant effects affect lidocaine-induced seizures, we compared the effects of sevoflurane, isoflurane, and halothane in cats. Fifty animals were allocated to 1 of 10 groups: 70% nitrous oxide (N2O), 0.6 minimum alveolar anesthetic concentration (MAC) + 70% N2O, 1.5 MAC + 70% N2O, and 1.5 MAC of each volatile agent in oxygen. Lidocaine 4 mg x kg(-1) x min(-1) was infused IV under mechanical ventilation with muscle relaxation. Electroencephalogram in the cortex, amygdala, and hippocampus and multiunit activities in the midbrain reticular formation (R-MUA) were recorded. Lidocaine induced spikes first from the amygdala or hippocampus in the 70% N2O and halothane groups and from the cortex in the sevoflurane and isoflurane groups. Lidocaine induced seizures in all cats in the 70% N2O and 0.6 MAC + N2O groups. Seizure occurrence was reduced in the 1.5 MAC + N2O group (P < 0.05 versus 70% N2O). The onset of seizure was delayed in the 0.6 MAC + N2O and 1.5 MAC groups for sevoflurane and isoflurane, but not for halothane, compared with the 70% N2O group (P < 0.05). Lidocaine increased R-MUA with seizure by 130%+/-56% in the 70% N2O group. The increase of R-MUA with seizure was more suppressed in the volatile anesthetic groups than in the 70% N2O group (P < 0.05). In the present study, sevoflurane and isoflurane attenuated seizure when the blood lidocaine concentration was accidentally increased. ⋯ Increasingly, epidural blockade is combined with general anesthesia to achieve stress-free anesthesia and continuous pain relief in the postoperative period. In the present study, sevoflurane and isoflurane attenuated seizure when the blood lidocaine concentration was accidentally increased.
-
Anesthesia and analgesia · Jan 2000
Cardiopulmonary resuscitation during severe hypothermia in pigs: does epinephrine or vasopressin increase coronary perfusion pressure?
The American Heart Association does not recommend epinephrine for management of hypothermic cardiac arrest if body core temperature is below 30 degrees C. Furthermore, the effects of vasopressin administration during hypothermic cardiac arrest are totally unknown. This study was designed to assess the effects of vasopressin and epinephrine on coronary perfusion pressure in a porcine model during hypothermic cardiac arrest cardiopulmonary resuscitation (CPR). Pigs were surface-cooled until their body core temperature was 26 degrees C. After 30 min of untreated cardiac arrest, followed by 3 min of basic life support CPR, 15 animals were randomly assigned to receive, at 5-min intervals, either vasopressin (0.4, 0.4, and 0.8 U/kg; n = 5), epinephrine (45, 45, and 200 microg/kg; n = 5), or saline placebo (n = 5). Compared with epinephrine, mean +/- SEM coronary perfusion pressure was significantly higher (P < 0.05) 90 s and 5 min after the first (35+/-4 vs 22+/-3 mm Hg and 37+/-2 vs 16+/-2 mm Hg) and the second vasopressin administration (40+/-5 vs 26+/-5 mm Hg and 36+/-5 vs 18+/-2 mm Hg, respectively). After the third drug administration, coronary perfusion pressure in the epinephrine group increased dramatically and was comparable to vasopressin. In the saline placebo group, coronary perfusion pressure was significantly lower (P < 0.05) than in the vasopressin and epinephrine groups. Six animals treated with epinephrine or vasopressin had transient return of spontaneous circulation, whereas all placebo animals died (P < 0.05). During CPR in severe hypothermia, administration of both vasopressin and epinephrine resulted in significant increases in coronary perfusion pressure when compared with placebo. ⋯ Our study was designed to assess the effects of vasopressin and epinephrine in a porcine model simulating cardiac arrest during severe hypothermia. This study demonstrates that the administration of both emergency drugs results in an increased perfusion pressure in the heart.
-
Anesthesia and analgesia · Jan 2000
Clinical TrialMagnetic resonance imaging of the distribution of local anesthetic during the three-in-one block.
The three-in-one technique of simultaneously blocking the femoral, the lateral femoral cutaneous (LFC), and the obturator nerves by a single injection of a local anesthetic was first described in 1973, and it was suggested that the underlying mechanism was one of cephalad spread resulting in a blockade of the lumbar plexus. Today, the technique is widely used in surgery and pain management of the lower limb. Many investigators have, however, reported suboptimal analgesia levels, particularly in the obturator nerve. The purpose of this prospective study was to trace the distribution of a local anesthetic during a three-in-one block by means of magnetic resonance imaging (MRI). Seven patients scheduled for surgery of the lower limb were analyzed with the aid of a primary MRI and then received three-in-one blocks using 30 mL of bupivacaine 0.5% under the guidance of a nerve stimulator. A secondary MRI was performed to determine the distribution pattern of the local anesthetic. It emerged that the local anesthetic blocks the femoral nerve directly, the LFC nerve through lateral spread, and the anterior branch of the obturator nerve by slightly spreading in a medial direction. No involvement of the proximal and posterior portions of the obturator nerve was observed, nor was there any cephalad spread that could have resulted in a lumbar plexus blockade. We therefore conclude that the basis of the three-in-one block is confined to lateral, medial, and caudal spread of the local anesthetic, which effectively blocks the femoral and LFC nerves, as well as the distal anterior branch of the obturator nerve. ⋯ We demonstrate by using magnetic resonance imaging that the mechanism of a three-in-one block is one of lateral, caudal, and slight medial spread of a local anesthetic with subsequent blockade of the femoral, the lateral femoral cutaneous, and the anterior branch of the obturator nerves. It does not involve cephalad spread of the local anesthetic with blockade of the lumbar plexus.
-
Anesthesia and analgesia · Jan 2000
Spinal coadministration of ketamine reduces the development of tolerance to visceral as well as somatic antinociception during spinal morphine infusion.
This study was designed to investigate the effects of ketamine, an N-methyl-D-aspartate receptor antagonist, on the development of tolerance to morphine and morphine antinociception during intrathecal infusion. Two intrathecal catheters were implanted in the subarachnoid space in male rats under pentobarbital anesthesia. One catheter was used for the intrathecal infusion with the following solutions: morphine 1 microg x kg(-1) x hr(-1)(M1) and 5 microg x kg(-1) x hr(-1) (M5);ketamine 250 microg x kg(-1) x hr(-1) (K250); morphine plus ketamine, 1 microg x kg(-1) x hr(-1) plus 250 microg x kg(-1) x hr(-1) (M1 + K250) and 5 microg x kg(-1) x hr(-1) + 250 microg x kg(-1) x hr(-1) (M5 + K250); or saline. The other catheter was used for morphine challenge tests. The responses to noxious somatic and visceral stimuli were measured by tail flick (TF) and colorectal distension (CD) tests, respectively. Measurements were performed once a day for 7 days. Challenge tests with intrathecal morphine were performed to assess the magnitude of tolerance on Day 5 and Day 7. The antinociceptive effect was evaluated by using the percent of maximal possible effect (%MPE). Morphine infusion produced significant increases in %MPEs in TF and CD tests, while the saline and K250 infusions did not show any changes. The M1 + K250 infusion significantly increased the %MPEs in TF and CD tests, although the M1 and K250 infusions alone showed no changes. M5 + K250 enhanced the increases of %MPEs in TF and CD tests compared with the M5 infusion alone. In the challenge tests, the M1 + K250 infusion showed no significant decrease in %MPEs and TF and CD tests. The M5 + K250 infusion significantly inhibited those decreases in %MPEs, although the M5 infusion showed significant decreases in TF and CD tests. We concluded that ketamine attenuated the development of morphine tolerance to antinociceptive effects and increased the somatic and visceral antinociception of morphine. ⋯ Intrathecally coinfused ketamine attenuated morphine tolerance to somatic and visceral antinociception and increased morphine antinociception at the spinal level. These results suggest that a combination of morphine with ketamine may have an advantage in long-term use of opioids for controlling visceral as well as somatic pain.