Anesthesia and analgesia
-
Anesthesia and analgesia · Aug 2005
The efficacy and safety of pain management before and after implementation of hospital-wide pain management standards: is patient safety compromised by treatment based solely on numerical pain ratings?
Inadequate analgesia in hospitalized patients prompted the Joint Commission on Accreditation of Healthcare Organizations in 2001 to introduce standards that require pain assessment and treatment. In response, many institutions implemented treatment guided by patient reports of pain intensity indexed with a numerical scale. Patient safety associated with treatment of pain guided by a numerical pain treatment algorithm (NPTA) has not been examined. We reviewed patient satisfaction with pain control and opioid-related adverse drug reactions before and after implementation of our NPTA. Patient satisfaction with pain management, measured on a 1-5 scale, significantly improved from 4.13 to 4.38 (P < 0.001) after implementation of an NPTA. The incidence of opioid over sedation adverse drug reactions per 100,000 inpatient hospital days increased from 11.0 pre-NPTA to 24.5 post-NPTA (P < 0.001). Of these patients, 94% had a documented decrease in their level of consciousness preceding the event. Although there was an improvement in patient satisfaction, we experienced a more than two-fold increase in the incidence of opioid over sedation adverse drug reactions in our hospital after the implementation of NPTA. Most adverse drug reactions were preceded by a documented decrease in the patient's level of consciousness, which emphasizes the importance of clinical assessment in managing pain. ⋯ Although patient satisfaction with pain management has significantly improved since the adoption of pain management standards, adverse drug reactions have more than doubled. For the treatment of pain to be safe and effective, we must consider more than just a one-dimensional numerical assessment of pain.
-
Anesthesia and analgesia · Aug 2005
Case ReportsRecombinant human erythropoietin use in a critically ill Jehovah's witness after cardiac surgery.
Complex cardiac surgery often requires blood transfusion. Some patients refuse transfusion, even when it is potentially life-threatening to do so. Although recombinant human erythropoietin (rhEPO) has been used to reduce the need for blood transfusion, it has been considered ineffective in critically ill patients. The time course of hematological responses in a Jehovah's Witness patient with acute renal failure and severe cardiac disease suggests that a trial of rhEPO should be considered for salvage therapy in critically ill patients. ⋯ The authors describe successful treatment of life-threatening anemia using recombinant human erythropoietin in a critically ill Jehovah's Witness patient after cardiac surgery.
-
Anesthesia and analgesia · Aug 2005
Beta3-containing gamma-aminobutyric acidA receptors are not major targets for the amnesic and immobilizing actions of isoflurane.
Mice bearing an N265M point mutation in the gamma-aminobutyric acid (GABA)(A) receptor beta3 subunit resist various anesthetic effects of propofol and etomidate. They also require a 16% larger concentration of enflurane and a 21% larger concentration of halothane to abolish the withdrawal reflex than do wild-type mice. Using a Pavlovian test, we measured whether this mutation increased the concentration of isoflurane required to impair learning and memory relative to wild-type mice. We found that the concentration was not significantly increased. We also measured MAC (the minimum alveolar concentration required to eliminate movement in response to noxious stimulation in 50% of subjects). Isoflurane MAC for mutant mice (1.93% +/- 0.0.03%; mean +/- se; n = 14) was 17.0% larger than MAC for wild-type mice (1.65 +/- 0.04; n = 14; P < 0.001). Similarly, the cyclopropane MAC for mutant mice (27.6% +/- 0.55%; n = 16) was 13.6% larger than MAC for wild-type mice (24.3 +/- 0.46; n = 8; P < 0.01). The increase in MAC for cyclopropane was unexpected, because published reports find only minimal actions at alpha1beta2gamma2 GABA(A) receptors whereas isoflurane provides a large enhancement. Consistent with previous work on alpha1beta2gamma2 GABA(A) receptors, we found in Xenopus oocytes that 5 MAC cyclopropane enhanced the effect of GABA on alpha1beta2gamma2 GABA(A) receptors by only 76%, and by a nearly identical enhancement in alpha1beta3gamma2, and alpha6beta3gamma2 receptors. In contrast, a much smaller concentration of isoflurane (1 MAC) produced a 160% to 310% enhancement in these receptors. If, relative to isoflurane, cyclopropane minimally increases GABA-induced chloride currents at any GABA(A) receptor subtype, the present data for MAC are consistent with the notion that GABA(A) receptors do not mediate the immobility produced by inhaled anesthetics. ⋯ The results of the present study indicate that beta3-containing gamma-aminobutyric acidA receptors do not mediate the amnesia produced by isoflurane and do not mediate, or only partially mediate, the immobility produced by inhaled anesthetics.
-
Anesthesia and analgesia · Aug 2005
A retrospective analysis of a remifentanil/propofol general anesthetic for craniotomy before awake functional brain mapping.
We performed this study to summarize drug dosing, physiologic responses, and anesthetic complications from an IV general anesthetic technique for patients undergoing craniotomy for awake functional brain mapping. Review of 98 procedures revealed "most rapid" IV infusion rates for remifentanil 0.05, 0.05-0.09 microg x kg(-1) x min(-1) and propofol 115, 100-150 microg x kg(-1) x min(-1). The infusions lasted for 78, 58-98 min. Intraoperative emergence from general anesthesia was 9 (6-13) min after discontinuing IV infusions to allow for brain mapping and was independent of infusion duration and duration of craniotomy before mapping. Spontaneous ventilation was generally satisfactory during drug infusion, as evidenced by Sao(2) = 95% (92%-98%) and Paco(2) = 50 (47-55) mm Hg. However, we recorded at least one 30-s epoch of apnea in 69 of 96 patients. Maximum systolic arterial blood pressure was 150 (139-175) mm Hg and minimal systolic arterial blood pressure was 100 (70-150) mm Hg during drug infusion. Three patients experienced intraoperative seizures. Two patients did not tolerate the awake state and required reinduction of general anesthesia. No patients required endotracheal intubation or discontinuation of surgery. This general anesthetic technique is effective for craniotomy with awake functional brain mapping and offers an alternative to continuous wakefulness or other IV sedation techniques. ⋯ An IV general anesthetic technique using remifentanil and propofol is an effective method allowing for reliable emergence for intraoperative awake functional brain mapping during craniotomy.
-
Epidural catheters (EC) are often used in pediatric patients for intraoperative and postoperative pain relief. The small anatomical structures and catheter insertion under general anesthesia make it more difficult to perform EC and to prevent damage. In this study we investigated the use of ultrasound (US) in detecting neuraxial structures during insertion and placement of EC in children. ASA I-II children scheduled for elective surgery under combined general and epidural anesthesia were studied. Patients received balanced anesthesia using sevoflurane, opioids and rocuronium. Before EC insertion US examination in a lateral position was done to visualize and identify neuraxial structures. Quality of visualization and site and depth of structures were recorded. Using a sterile kit to hold the US probe in position and enable the visualization of the neuraxial structures, an epidural cannula was inserted, using the loss of resistance technique, as the EC passed under US control to the desired level. Of 25 children, 23 were evaluated. Epidural space, ligamentum flavum, and dural structures were clearly identified and the depth to skin level estimated in all patients. Loss of resistance was visualized in all patients with a lumbar epidural approach. Correlation of US measured depth and depth of loss of resistance was 0.88. In eight of 23 patients EC could be visualized during insertion and in 11 others it could be visualized with additional US planes. US is an excellent tool to identify neuraxial structures in both infants and children. The size and the incomplete ossification of the vertebra allow exact visualization and localization of the depth of the epidural space, the loss of resistance, and all relevant neuraxial structures. ⋯ Epidural catheters in children are mostly inserted under sedation or general anesthesia. This study showed that the use of ultrasound could help visualize all relevant neuraxial structures and their site and depth from the skin.