Anesthesia and analgesia
-
Anesthesia and analgesia · Mar 2014
Mechanical Allodynia Induced by Nucleoside Reverse Transcriptase Inhibitor Is Suppressed by p55TNFSR Mediated by Herpes Simplex Virus Vector Through the SDF1 alpha/CXCR4 System in Rats.
In the human immunodeficiency virus (HIV)-associated sensory neuropathy, neuropathic pain associated with the use of nucleoside reverse transcriptase inhibitors (NRTIs) in patients with HIV/acquired immunodeficiency syndrome is clinically common. While evidence demonstrates that neuropathic pain is influenced by neuroinflammatory events that include the proinflammatory molecules, tumor necrosis factor-α (TNF-α), stromal cell-derived factor 1-α (SDF1-α), and C-X-C chemokine receptor type 4 (CXCR4), the detailed mechanisms by which NRTIs contribute to the development of neuropathic pain are not known. In this study, we investigated the role of these proinflammatory molecules in the dorsal root ganglion (DRG) and the spinal dorsal horn in NRTIs-mediated neuropathic pain state. ⋯ Our studies demonstrate that TNF-α through the SDF1/CXCR4 system is involved in the NRTIs-related neuropathic pain state and that blocking the signaling of these proinflammatory molecules is able to reduce NRTIs-related neuropathic pain. These results provide a novel mechanism-based approach (gene therapy) to treating HIV-associated neuropathic pain.
-
Anesthesia and analgesia · Mar 2014
Editorial CommentEpidural Fever in Obstetric Patients: It's a Hot Topic.
-
Anesthesia and analgesia · Mar 2014
The mechanism of increased blood flow in the brain and spinal cord during hemodilution.
Hemodilution is accompanied by an increase in cerebral blood flow, but whether this is due to vasodilation in response to reduced arterial oxygen content, reduced blood viscosity, or a combination of these mechanisms is a matter of debate. We performed the current study to gain insight into this question by evaluating the effect of hemodilution on (1) vasodilator reserve and (2) the level of blood flow during hypercapnia-induced vasodilation in regions of the brain and spinal cord. ⋯ Hemodilution caused recruitment of the vasodilator reserve, suggesting that vasodilation played a role in the increase in RBF throughout the CNS. Although the mean values for RBF during hypercapnia were similar with and without hemodilution, a large variation in the responses precluded a conclusive determination of whether or not reduced blood viscosity also contributed to the hemodilution-induced increases in RBF. A dependence on vasodilation would limit autoregulatory capability throughout the CNS during hemodilution, which would enhance the risk for ischemia if hypotension was superimposed.