Anesthesia and analgesia
-
Anesthesia and analgesia · May 2014
Montelukast Attenuates Neuropathic Pain Through Inhibiting p38 Mitogen-Activated Protein Kinase and Nuclear Factor-Kappa B in a Rat Model of Chronic Constriction Injury.
Cysteinyl leukotrienes and their receptors have been shown to be involved in the generation of neuropathic pain. We performed this study to determine the antagonistic effect of montelukast, a cysteinyl leukotrienes receptor antagonist, on neuropathic pain and its underlying mechanism. ⋯ These results suggest that montelukast could effectively attenuate neuropathic pain in CCI rats by inhibiting the activation of p38MAPK and NF-κB signaling pathways in spinal microglia.
-
Anesthesia and analgesia · May 2014
The antiapoptotic effect of remifentanil on the immature mouse brain: an ex vivo study.
The use of remifentanil in a context of potential prematurity led us to explore ex vivo the opioid effects on the immature mouse brain. Remifentanil enhances medullary glutamatergic N-methyl-D-aspartate (NMDA) receptor activity. Furthermore, in neonatal mouse cortex, NMDA was previously shown to exert either excitotoxic or antiapoptotic effects depending on the cortical layers. With the use of a model of acute cultured brain slices, we evaluated the potential necrotic and apoptotic effects of remifentanil, alone or associated with its glycine vehicle (commercial preparation of remifentanil, C.P. remifentanil), on the immature brain. ⋯ The present data indicate that at a supraclinical concentration C.P. remifentanil had no pronecrotic effect but exerted ex vivo antiapoptotic action on the immature mouse brain, involving the opioid and NMDA receptors, and the mitochondrial-dependent apoptotic pathway. Assessment of the impact of the antiapoptotic effect of remifentanil in in vivo neonatal mouse models of brain injury will also be essential to measure its consequences on the developing brain.