Anesthesia and analgesia
-
Anesthesia and analgesia · Sep 2016
PICK1 Regulates the Expression and Trafficking of AMPA Receptors in Remifentanil-Induced Hyperalgesia.
Remifentanil is used widely in clinical anesthesia because it induces more rapid and more common hyperalgesia than other opioid analgesics. Activation of N-methyl-D-aspartate (NMDA) receptors takes a pivotal part in remifentanil-induced hyperalgesia. Like NMDA receptors, the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) are excitatory ion glutamate receptors in postsynaptic membrane, which are involved in the transmission of both acute and chronic pain. Protein interacting with C kinase 1 (PICK1) plays an important role in NMDA receptor-mediated internalization of glutamate receptor 2 (GluR2)-containing AMPARs and contributes to the induction and maintenance of inflammation-induced pain. This study aimed to test the hypothesis that PICK1 contributes to remifentanil-induced hyperalgesia by regulating AMPAR expression and trafficking in the spinal cord. ⋯ These results indicate that PICK1 deficiency might reverse remifentanil-induced hyperalgesia through regulating GluR2-containing AMPAR expression and trafficking in the spinal cord dorsal horn.
-
Anesthesia and analgesia · Sep 2016
The Effects of Vasopressin and Oxytocin on the Fetoplacental Distal Stem Arteriolar Vascular Resistance of the Dual-Perfused, Single, Isolated, Human Placental Cotyledon.
Vasoactive agents administered to counter maternal hypotension at cesarean delivery may theoretically intensify the hypoxemic fetoplacental vasoconstrictor response and, hence, negatively impact transplacental oxygen delivery to the fetus. Yet, this aspect of their pharmacodynamic profiles is seldom mentioned, let alone investigated. We hypothesized that vasopressin, a potent systemic vasoconstrictor, and oxytocin, a uterotonic agent administered routinely at cesarean delivery, which, in contrast to vasopressin, possesses significant systemic vasodilator properties, would not influence distal stem villous arteriolar resistance. ⋯ Oxytocin and vasopressin do not influence human fetoplacental distal stem villous arteriolar resistance. The neutral impact of vasopressin noted here is thus analogous to the reported negligible influence of the drug on human pulmonary arteriolar resistance. Neither drug seems likely to adversely influence the compensatory hypoxemic fetoplacental vasoconstrictor response.
-
Anesthesia and analgesia · Sep 2016
Syringe Pump Performance Maintained with IV Filter Use During Low Flow Rate Delivery for Pediatric Patients.
Complex surgical and critically ill pediatric patients rely on syringe infusion pumps for precise delivery of IV medications. Low flow rates and in-line IV filter use may affect drug delivery. To determine the effects of an in-line filter to remove air and/or contaminants on syringe pump performance at low flow rates, we compared the measured rates with the programmed flow rates with and without in-line IV filters. ⋯ With low flow rates used in complex surgical and pediatric critically ill patients, the addition of IV filters did not confer statistically significant changes in startup delay, flow variability, or time to reach steady-state flow of medications administered by syringe infusion pumps. The overall flow rate was lower than programmed flow rate with or without a filter.
-
Anesthesia and analgesia · Sep 2016
A Brief Period of Hypothermia Induced by Total Liquid Ventilation Decreases End-Organ Damage and Multiorgan Failure Induced by Aortic Cross-Clamping.
In animal models, whole-body cooling reduces end-organ injury after cardiac arrest and other hypoperfusion states. The benefits of cooling in humans, however, are uncertain, possibly because detrimental effects of prolonged cooling may offset any potential benefit. Total liquid ventilation (TLV) provides both ultrafast cooling and rewarming. In previous reports, ultrafast cooling with TLV potently reduced neurological injury after experimental cardiac arrest in animals. We hypothesized that a brief period of rapid cooling and rewarming via TLV could also mitigate multiorgan failure (MOF) after ischemia-reperfusion induced by aortic cross-clamping. ⋯ A brief period of ultrafast cooling with TLV followed by rapid rewarming attenuated biochemical and histological markers of MOF after aortic cross-clamping. Cardiovascular and liver dysfunctions were limited by a brief period of hypothermic TLV, even when started after reperfusion. Conversely, acute kidney injury was limited only when hypothermia was started before reperfusion. Further work is needed to determine the clinical significance of our results and to identify the optimal duration and timing of TLV-induced hypothermia for end-organ protection in hypoperfusion states.