Anesthesia and analgesia
-
Anesthesia and analgesia · Jul 1998
Desflurane and the nonimmobilizer 1,2-dichlorohexafluorocyclobutane suppress learning by a mechanism independent of the level of unconditioned stimulation.
We previously demonstrated that anesthetics and non-immobilizers suppress learning and memory in rats. In the training portion of the test, rats received a light plus a footshock and learned to associate the two, as evidenced by subsequent potentiation of the response (jumping) to light plus a noise (fear-potentiated startle). However, anesthetics and nonimmobilizers also decreased the response of animals receiving footshocks during training, which suggests that the reduction in fear-potentiated startle might reflect analgesia, rather than an impairment of learning and memory. Furthermore, although we previously demonstrated that the nonimmobilizer 2,3-dichlorohexafluorocyclobutane (2N) could completely abolish learning, we did not demonstrate the minimal dose required. In the present study, we eliminated analgesia as a confounding factor by training rats breathing desflurane and 2N with footshock intensities that produced responses at least equal to those produced in control animals. Both desflurane and 2N suppressed learning at 0.2 times the minimum alveolar anesthetic concentration (MAC) or the MAC predicted from lipid solubility, despite the increased footshock intensity. This partial pressure of desflurane equals that previously shown to suppress learning at lower footshock intensities. We conclude that suppression of learning and memory by desflurane and 2N does not result from decreased sensitivity to the unconditioned stimulus (the footshock) and that the potency of 2N is consistent with its lipophilicity. ⋯ General anesthesia eliminates recall of intraoperative events, including pain. Using an animal model, we refuted the hypothesis that lack of recall results from the analgesia (i.e., the reduced response to painful stimuli produced by inhaled drugs) rather than from a direct effect on learning.
-
Anesthesia and analgesia · Jul 1998
Medial canthus single-injection episcleral (sub-tenon anesthesia): computed tomography imaging.
Single-injection medial canthus periocular anesthesia is a promising regional anesthesia technique for ophthalmic surgery. The purpose of this computed tomography (CT) study was to confirm that this technique is an episcleral injection and to explain why it provides a good akinesia of the globe. Four fresh nonpreserved cadavers (eight eyes) were injected with fractioned various volumes of a contrast media using a previously described technique. For each injection and each eye, CT scans were performed in three planes of the space, and the site and spread of the injection was observed. We confirm that single-injection medial canthus periocular anesthesia is, in fact, an episcleral anesthesia, which explains the good sensory block of the globe. When larger volumes are injected, the contrast media spreads to the lids and extraocular muscle sheaths. We believe that this may explain why this technique provides good sensory and motor block of the globe and eyelids. This technique is a promising alternative to both retro- and peribulbar anesthesia. ⋯ We describe medial canthus single-injection periocular anesthesia by a computed tomography injection study in eight human cadaver eyes. It was confirmed to be an episcleral injection. Akinesia of the eyeball is provided by spreading of the local anesthetic solution from the episcleral space to the rectus muscle sheaths.
-
Anesthesia and analgesia · Jun 1998
Comparative StudyThe effects of propofol on cerebral blood flow velocity and cerebral oxygen extraction during cardiopulmonary bypass.
We investigated the effects of burst-suppression doses of propofol on cerebral blood flow velocity (CBFV), cerebral oxygen extraction (COE), and dynamic autoregulation in 20 patients undergoing cardiac surgery. The experimental procedure was performed during nonpulsatile cardiopulmonary bypass (CPB) with stable hypothermia (32 degrees C) in fentanyl-anesthetized patients. Middle cerebral artery transcranial Doppler flow velocity, right jugular bulb oxygen saturation, and jugular venous pressure (JVP) were continuously measured. Dynamic autoregulation was tested by stepwise changes in mean arterial pressure (MAP) within a range of 40-80 mm Hg by sodium nitroprusside and phenylephrine before (control) and during propofol infusion, with a stable plasma concentration (approximately 9 microg/mL). Propofol induced a 35% decrease in CBFV (P < 0.0001) and a 10% decrease in COE (P < 0.05) compared with control. The slopes of the curves relating CBFV and COE to cerebral perfusion pressure (CPP = MAP - JVP) were less pronounced with propofol (P < 0.01 and P < 0.05, respectively). We conclude that propofol decreases CBFV and improves dynamic autoregulation during moderate hypothermic CPB. Furthermore, during propofol infusion, cerebral blood flow was in excess relative to oxygen demand, as indicated by the decrease in COE. ⋯ In this study, we evaluated the effects of propofol on continuously measured cerebral blood flow velocity (CBFV) and cerebral oxygen extraction as a function of perfusion pressure. Propofol induced 35% and 10% decreases in CBFV and cerebral oxygen extraction, respectively. The slope of the curve relating cerebral perfusion pressure to CBFV decreased with propofol.
-
Anesthesia and analgesia · Jun 1998
Randomized Controlled Trial Comparative Study Clinical TrialArterial oxygenation and shunt fraction during one-lung ventilation: a comparison of isoflurane and sevoflurane.
The aim of this study was to evaluate the effect of isoflurane and sevoflurane on oxygenation and shunt fraction during one-lung ventilation (OLV). Twenty patients undergoing lobectomy for lung cancer and scheduled for long-term OLV were enrolled in this study. Patients were allocated to treatment with either isoflurane or sevoflurane. Arterial oxygenation, shunt fraction, and hemodynamics were evaluated at the end of two-lung ventilation; 20 min after the initiation of OLV; 20 min after the application of 4-cm positive end-expiratory pressure (PEEP) to the dependent lung; 20 min after 8-cm PEEP; and 20 min after the conversion from OLV to two-lung ventilation. There was no significant difference between isoflurane and sevoflurane with regard to oxygenation, shunt fraction, or hemodynamics during OLV. PaO2 values after the application of 4-cm PEEP increased from 131.1 +/- 11.8 mm Hg to 190.6 +/- 22.9 mm Hg in the isoflurane group (P < 0.05) and from 127.2 +/- 14.3 mm Hg to 192.4 +/- 26.9 mm Hg in the sevoflurane group (P < 0.05). The selection of either isoflurane or sevoflurane for OLV was made without regard to arterial oxygenation and shunt fraction. PEEP application to the dependent lung is useful for improving oxygenation during OLV, but 8-cm PEEP had no added effect compared with 4-cm PEEP. ⋯ We compared the effects of isoflurane and sevoflurane on oxygenation, hemodynamics, and shunt fraction during one-lung ventilation in 20 patients undergoing scheduled lobectomy for lung cancer. There was no significant difference between isoflurane and sevoflurane with regard to oxygenation, shunt fraction, and hemodynamics during one-lung ventilation. The application of 4-cm positive end-expiratory pressure increased the partial pressure of arterial oxygen during one-lung ventilation.