Epilepsia
-
Intracranial electroencephalography (EEG), performed presurgically in patients with drug-resistant and difficult-to-localize focal epilepsy, samples only a small fraction of brain tissue and thus requires strong hypotheses regarding the possible localization of the epileptogenic zone. EEG/fMRI (functional magnetic resonance imaging), a noninvasive tool resulting in hemodynamic responses, could contribute to the generation of these hypotheses. This study assessed how these responses, despite their interictal origin, predict the seizure-onset zone (SOZ). ⋯ The most significant hemodynamic response to interictal discharges delineates the subset of the irritative zone that generates seizures in a high proportion of patients with difficult-to-localize focal epilepsy. EEG/fMRI generates responses that are valuable targets for electrode implantation and may reduce the need for implantation in patients in whom the most significant response satisfies the condition of our discriminant analysis.
-
The rationale and the surgical technique of stereo-electroencephalography (SEEG)-guided radiofrequency thermocoagulation (RF-TC) in the epileptogenic zone (EZ) of patients with difficult-to-treat focal epilepsy are described in this article. The application of the technique in pediatric patients is also detailed. Stereotactic ablative procedures by RF-TC have been employed in the treatment of epilepsy since the middle of the last century. ⋯ The technical details of SEEG implantation and of SEEG-guided RF-TC are described herein, with special attention to the employment of the procedure in pediatric cases. SEEG-guided RF-TC offers a potential therapeutic option based on robust electroclinical evidence with acceptable risks and costs. The procedure may be performed in patients who, according to SEEG recording, are not eligible for resective surgery, and it may be an alternative to resective surgery in a small subset of operable patients.
-
Review
Vagus nerve stimulation: Surgical technique of implantation and revision and related morbidity.
Indications for vagus nerve stimulation (VNS) therapy include focal, multifocal epilepsy, drop attacks (tonic/atonic seizures), Lennox-Gastaut syndrome, tuberous sclerosis complex (TSC)-related multifocal epilepsy, and unsuccessful resective surgery. Surgical outcome is about 50-60% for seizures control, and may also improve mood, cognition, and memory. On this basis, VNS has also been proposed for the treatment of major depression and Alzheimer's' disease. ⋯ As described in the literature, the surgical techniques of lead revision and replacement are two: sharp and blunt dissection of helical electrodes and replacement; and blunt dissection combined with ultrasharp low-voltage cautery dissection. The incidence of left vocal cord palsy after vagus nerve stimulator replacement/revision is slightly higher than that of first implantation (4.9% vs. 3.8%). A de novo implantation in a naive segment of the left or right vagus nerve may be considered in specific cases; the use of the right vagus nerve is a rare exception that may be chosen with an acceptable result.
-
The phenotype of seizure clustering with febrile illnesses in infancy/early childhood is well recognized. To date the only genetic epilepsy consistently associated with this phenotype is PCDH19, an X-linked disorder restricted to females, and males with mosaicism. The SMC1A gene, which encodes a structural component of the cohesin complex is also located on the X chromosome. Missense variants and small in-frame deletions of SMC1A cause approximately 5% of Cornelia de Lange Syndrome (CdLS). Recently, protein truncating mutations in SMC1A have been reported in five females, all of whom have been affected by a drug-resistant epilepsy, and severe developmental impairment. Our objective was to further delineate the phenotype of SMC1A truncation. ⋯ Truncation mutations in SMC1A cause a severe epilepsy phenotype with cluster seizures in females. These mutations are likely to be nonviable in males.
-
To assess long-term outcome and identify prognostic factors of radiofrequency thermocoagulation (RFTC) following stereoelectroencephalography (SEEG) explorations in particularly complex cases of focal epilepsy. ⋯ Our study confirms that RFTC, although less effective than resective surgery, can be a reasonable therapeutic option in complex cases where anatomic constraints make impossible any cortical resection. Further prospective studies are needed to better define RFTC indications and to optimize its methodology.