Epilepsia
-
Multicenter Study
Vagus nerve stimulation for drug-resistant epilepsy: a European long-term study up to 24 months in 347 children.
To gain insight into the long-term impact of vagus nerve stimulation (with VNS Therapy) in children with drug-resistant epilepsy, we conducted the largest retrospective multicenter study to date over an extended follow-up period of up to 24 months. ⋯ The results demonstrate that adjunctive VNS Therapy in children with drug-resistant epilepsy reduces seizure frequency and is well tolerated over a 2-year follow-up period. No new safety issues were identified. A post hoc analysis revealed a dose-response correlation for VNS in patients with epilepsy.
-
The burden of epilepsy, in terms of both morbidity and mortality, is likely to vary depending on the etiology (primary [genetic/unknown] vs. secondary [structural/metabolic]) and with the use of antiepileptic drugs (AEDs). We estimated the disability-adjusted life years (DALYs) and modeled the remission rates of active convulsive epilepsy (ACE) using epidemiologic data collected over the last decade in rural Kilifi, Kenya. ⋯ The DALYs for ACE are high in rural Kenya, but less than the estimates of 2010 GBD study. Three-fourths of DALYs resulted from secondary epilepsy. Use of AEDs was associated with 40% reduction of DALYs. Improving adherence to AEDs may reduce the burden of epilepsy in this area.
-
Multiple tubers in patients with tuberous sclerosis complex (TSC) often are responsible for drug-resistant epilepsy. The complexity of the epileptic network formed by multiple tubers complicates localization of the epileptogenic zone that is needed to design a surgical treatment strategy. High frequency oscillations (HFOs) on intracranial video-electroencephalography (IVEEG) may be a valuable surrogate marker for the localization of the epileptogenic zone. The purpose of this study was to test the hypothesis that high occurrence rate (OR) of interictal HFOs can guide the localization of the epileptogenic zone. ⋯ The multiple extensive zones with high-OR HFOs suggest a complex and widespread epileptic network in patients with TSC. In a subset of TSC patients with drug-resistant epilepsy, resection of cortex with both interictal high-OR FRs and ripples on IVEEG correlated with a good seizure outcome.
-
Spike and slow waves consist of a "spike" including high-frequency oscillations (HFOs), which are linked to epileptogenicity and a "post-spike slow wave (PSS)" related to inhibitory activity. The aim of this study was to elucidate the spatiotemporal relationship between spike-related HFOs and PSS in patients with focal cortical dysplasia (FCD) type II. ⋯ Relative power reduction of PSS to spike-related HFOs in SOZ is relevant for seizure initiation. Our analysis will contribute to future studies of seizure prediction and distinction between pathologic and physiologic HFOs. A PowerPoint slide summarizing this article is available for download in the Supporting Information section here.
-
In temporal lobe epilepsy (TLE), the epileptogenic focus is focal and unilateral in the majority of patients. A key characteristic of focal TLE is the presence of subclinical epileptiform activity in both the ictal and contralateral "healthy" hemisphere. Such interictal activity is clinically important, as it may reflect the spread of pathology, potentially leading to secondary epileptogenesis. The role played by white matter pathways in this process is unknown. ⋯ Our results indicate that, among the tracts investigated, only the tapetum was associated with contralateral epileptiform activity, implicating this structure in seizures and possible secondary epileptogenesis. We describe two mechanisms that might explain this association (the interruption of inhibitory signals or the toxic effect of carrying epileptiform signals toward the healthy hemisphere), but also acknowledge other rival factors that may be at work. We also report that patients with TLE with bilateral spikes had increased lateral bitemporal lobe connectivity. Our current results can be seen as bringing together important functional and structural data to elucidate the basis of contralateral interictal activity in focal, unilateral epilepsy. A PowerPoint slide summarizing this article is available for download in the Supporting Information section here.